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Analysing queueing at toll plazas using a coupled,
multiple-queue, queueing system model: application
to toll plaza design
Partha Chakroborty, Rahul Gill and Pranamesh Chakraborty

Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

ABSTRACT
A vehicle approaching a toll plaza observes the queues at each of
the available toll-lanes before choosing which to join. This choice
process, the arrival process of vehicles and the service
characteristics of the toll-booths, affect the queues and delay the
drivers. In this paper, queueing at a toll plaza is modelled as a
multiple-queue queueing system where the arrival process to a
queue (toll-lane) is dependent on the state of all the queues. In
the past, such systems have been modelled mathematically only
for two queues and are not applicable for toll plazas with three or
more toll-lanes. The proposed model determines the steady-state
probability density function (pdf) for the queues at large toll
plazas. This study is used to determine the number of toll-lanes or
the length of the upstream queueing area required to achieve
certain user-specified levels-of-service. Expected delay and
maximum queue length are used as level-of-service measures.
Indicative design charts are also provided.
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1. Introduction

Toll plazas are required so that the revenue for the maintenance and improvement of road
infrastructure can be generated, at least in part, from those who use it. Yet by their existence
they form impediments to the smooth flow of traffic; it is this unavoidable inefficiency that
must be minimized. There are many examples where improperly designed toll plazas cause
severe inconvenience to travellers and reduce the mobility benefits that are supposed to
accrue from an expressway. The purpose of this paper is to develop a realistic model for
queueing at toll plazas so that such facilities can be designed efficiently given the flow on
the approach expressway and service characteristics of the toll-lanes (or toll-booths).

Over the years various computer simulation and analytical (queueing theory) models
have been attempted. The computer simulation models include those by Redding and
Junga (1992), Al-Deek, Mohamed, and Radwan (2000), Correa, Metzner, and Nino
(2004), and Russo, Harb, and Radwan (2010). These models, available at various levels
of sophistication, although useful for studying toll plazas, cannot be considered as a repla-
cement for analytical or queueing theory models that provide steady-state probability
density functions for the queues that form at a toll plaza.
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Edie (1954) was one of the first to attempt the use of queueing theory in analysing the
delay at a toll plaza. He used results from multiple server single-queue queueing systems,
like M/M/S and M/D/S (Taylor and Karlin 1984), where there is one queue that leads to
all the S servers and the user at the top of the queue joins the next available server.
Clearly, this is not how vehicles queue at a toll plaza. Sometime later, Haight (1958) pub-
lished his analysis of a queueing system applicable for a two toll-lane toll plaza. In the analy-
sis, he considers two queues in parallel with the queuers joining the shortest queue. In this
paper, he correctly avoids looking at the queueing at a toll plaza as a multiple server, single-
queue, queueing system; instead, he models it as a parallel, multiple-queue, queueing system.

Schwartz (1972) also points out how queueing at toll plazas are of the kind where there
are multiple queues and arriving vehicles choose one of them after evaluating the state of
all the queues. Schwartz (1972) further indicates that this choice, in the general case, can be
predicted only probabilistically and as a function of the queue lengths of each of the queues
(or toll-lanes) that the vehicle could have joined. He also presents analyses for some special
cases (with less than or equal to three servers or toll-lanes) where choice of a queue takes
place deterministically according to some rules. Conolly (1984) compares how the system
will fare had the queueing at a toll plaza not been the kind it is, but if it truly were a mul-
tiple server, single-queue, queueing system. He, like Haight (1958), restricts the discussion
to only a two-server (two toll-lane) system.

As the previous discussion shows, it has been long realized that one cannot use M/M/S,
M/D/S or similar such queueing analysis to analyse the queueing process at a toll plaza.
However, and somewhat surprisingly, the single-queue queueing model continues to be
used even in recent works (cf. Kim 2009). One of the reasons for this, although not justifi-
able, could be the fact that the multiple, parallel-queue models of Haight (1958) and
Schwartz (1972) are extremely difficult to solve. Schwartz (1972), for example, mentions
that the procedure described by him is ‘fantastically complicated’. Blanc (1987), while dis-
cussing similar queueing systems, albeit in a different setting, also mentions that ‘queueing
systems with more than one waiting line are in general hard to analyze’.

This paper formulates the queueing process at a toll plaza as a multiple server, multiple
parallel-queue queueing system (as opposed to a multiple server, single-queue queueing
system like M/M/S) with approaching drivers choosing a queue or toll-lane. The paper
applies a power series algorithm (PSA) described by Blanc (1987) to determine the
steady-state, state probabilities of the queueing system (that is, the probabilities of
queue lengths on the different toll-lanes). A closed-form analytical solution to a special
case of the proposed queueing system is also used to see how effectively the PSA deter-
mines the state probabilities. The results show that the PSA-based method is accurate.

As an application of the proposed model, the obtained state probabilities are used to
develop indicative tables and figures on the required minimum number of toll-lanes and
minimum length of the queueing area (upstream of the toll plaza) for different arrival
and service rates. In order to gain further confidence in the proposed model and its solution
technique, VISSIM, a popular, commercially available microscopic simulation tool, is also
used to simulate the flow at toll plazas. From the simulations of flow under various combi-
nations of arrival and service rates, the minimum number of toll-lanes required for each of
these combinations is also determined. These are then compared with those obtained from
the proposed model for the same arrival and service rates. The comparisons show that the
proposed model realistically describes the queueing process. It may be pointed out that the
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tables provided here are only to indicate how the proposed model can be used to design
essential elements of a toll plaza and are not meant to be exhaustive.

The paper is divided into four further sections. The next section describes the problem
more precisely and presents a mathematical formulation. The third section describes how
the PSA is used to determine the state probabilities. The fourth section presents results to
(i) validate the proposed model and its PSA-based solution procedure and (ii) indicate
how the state probabilities can be used to determine minimum number of toll-lanes or
the minimum length of upstream queueing areas required to provide some user-specified
level of service. The final section concludes the paper by highlighting the contributions and
the shortcomings of the present work. This section also points out the areas that require
further attention.

2. Problem statement and formulation

Figure 1 shows a typical toll plaza. The essential features of the toll plaza are the number
and type of toll-lanes (or toll-booths) and the length of the queue area (or alternatively the
length of the widened section) immediately upstream of the toll-booths. This length acts as
a storage space for the stopped vehicles waiting in queues to pay the toll. Vehicles of differ-
ent types arrive at the plaza. Each vehicle evaluates the queues in the various toll-lanes it
can join, chooses one toll-lane, and joins it. Sometimes, a vehicle also changes from its
original toll-lane to one of the adjacent toll-lanes.

There is ample evidence that drivers go through a choice process before selecting a toll-
lane; one can refer to Gulewicz and Danko (1995), Mudigonda, Bartin, and Ozbay (2009),
and Dubedi et al. (2012) for more discussions on the choice process at a toll plaza. The fact
that vehicles choose a toll-lane (or queue) after evaluating the queue lengths of all the
toll-lanes implies that the arrival process to a queue (or toll-lane) is dependent on the
condition (length) of the other queues at the toll plaza. This choice process creates a
dependence or coupling between the parallel queues of the system. This is true even if

Figure 1. Schematic diagram of a typical toll plaza.
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one ignores the reneging of vehicles from one queue (toll-lane) to join another. Hence, in
this paper, the queueing system at the toll plaza is referred to as a coupled, multiple-queue,
queueing system (CMQ2S). It is felt that such a terminology describes the queueing system
at a toll plaza more closely than the ‘queueing system with more than one waiting line’
terminology of Blanc (1987) or ‘lane selecting queueing models’ terminology of Schwartz
(1972) , or ‘parallel queues’ terminology of Haight (1958).

In the rest of the section, a mathematical formulation for the CMQ2S at a toll plaza is
presented. The description and formulation of the problem presented here frequently uses
the phrase ‘state of the system’. The state of the queueing system at a given time is
described as a vector of the queue lengths at the different toll-lanes (of the toll plaza) at
that time. For example, if a toll plaza has four toll-lanes and at a given time the queue
length on the first toll-lane is, say, 2, on the second toll-lane 7, on the third toll-lane 4,
and on the fourth toll-lane 5, then the state of the system at that time is (2, 7, 4, 5). Fur-
thermore, the term queue length of a toll-lane, as used here, includes the vehicle being
served at the toll-booth.

Before proceeding further, the assumptions used in the formulation and the notation
are presented. The assumptions are:

(1) Vehicles arrive according to the Poisson distribution,
(2) Service times at the toll-booths are distributed exponentially,
(3) An arriving vehicle chooses a toll-lane or queue depending on the state of the system

(i.e. depending on the queue lengths at all the toll-lanes),
(4) The choice process can be assumed to be deterministic like, ‘join the shortest queue’ or

stochastic wherein only a probability that a vehicle will join a queue is available,
(5) Once a vehicle joins a toll-lane or queue it cannot switch to another toll-lane or queue,

and
(6) The type of arriving vehicle has no impact on the queueing system.

The notation is as follows:

T Total number of toll-lanes or toll-booths (servers) at the toll plaza
Ni A random variable denoting the number of vehicles (including the vehicle paying the toll) in the queue on toll-

lane i
ni The values Ni can take (these are non-negative integers)
�n The vector (n1, n2, n3,… , nT) which describes the state of the system; note that the state of the system at any

time is described only in terms of the queue lengths at each of the toll-lanes
|�n| A scalar indicating the sum of individual elements of the vector n, i.e. |n| = n1 + n2 + n3+… + nT, the total

number of vehicles in the system
li Length of queue on toll-lane i
λ The rate at which vehicles arrive at the toll plaza
λi The rate at which vehicles join toll-lane i (or arrive at toll-lane i)
μ The rate at which vehicles depart from the toll plaza
μi The rate at which vehicles depart from toll-lane i
ρ The ratio of λ to μ
fi The ratio of μi to μ
P(r, �n) Probability of finding the system in state n, i.e. probability [Ni = ni; i = 1 … T ]; it is also a function of ρ
pi(�n) The probability that an arriving vehicle chooses toll-lane (or queue) i when the system is in state n
G(a) A function which returns a value of 1 if argument a is true, else returns a value of zero
�hi A vector (η1, η2,… , ηT) with ηi = 1 and ηj = 0 ∀j ≠ i
pi Proportion of vehicle type i in the traffic stream
Li Length of vehicle type i
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It can be said that when the CMQ2S reaches a steady state (i.e. the state probabilities do
not vary over time), the following equation must hold:

∑T
i=1

pi(�n)l+
∑T
i=1

miG(ni . 0)

{ }
P(r, �n) =

∑T
i=1

miP(r, �n+ �hi)

{ }

+
∑T
i=1

pi(�n− �hi)lG(ni . 0)P(r, �n− �hi)

{ } (1)

This equation indicates that in the steady (stationary) state the probability of leaving a
particular state (as expressed by the LHS of Equation (1)) must be equal to the prob-
ability of entering that state (as expressed by the RHS of Equation (1)). The LHS indi-
cates that the probability of leaving a particular state is equal to the probability of
either an arrival or a departure occurring while the system is in that state. Note that
a departure can occur from a particular queue if and only if that queue has at least
one vehicle. The RHS is derived based on the fact that one can enter a particular
state either through a departure from the queue (or toll-lane) or through an arrival
to the queue (or toll-lane) that made the present state different from the state the
system is entering into. (Two points should be noted: (i) no queue can ever be in a
state with negative number of vehicles and (ii) arrival and departure processes are
assumed to be Poisson.)

Dividing throughout by μ and substituting fi = μi /μ, Equation (1) can be re-written in
terms of ρ (where ρ = λ/μ) as:

r
∑T
i=1

pi(�n)+
∑T
i=1

fiG(ni . 0)

{ }
P(r, �n) =

∑T
i=1

fiP(r, �n+ �hi)

{ }

+ r
∑T
i=1

pi(�n− �hi)G(ni . 0)P(r, �n− �hi)

{ } (2)

For a given ρ, equations such as Equation (2) and the relation indicating that the sum of all
P(r, �n) is unity, can be solved to yield the state probabilities, P(r, �n). However, solving this
set of equations is difficult. Blanc (1987) presents a PSA method based on the ideas of
Keane, Hooghiemstra and van de Ree (referred to in Blanc (1987) as private communi-
cations) that can be used to obtain the state probabilities for the present queueing
system represented by Equation (2). Blanc’s procedure is a numerical scheme based on
power series expansions of state probabilities as a function of ρ. This method has been
chosen here because ‘experience has taught that the algorithm is more powerful than
algorithms based on truncation of the state space, and that it provides more accurate
results’ (Blanc 1992). The next section describes how the state probabilities are determined
in this paper using the PSA. The discussion is brief and provided mainly for purposes of
completeness. The interested reader may refer to Blanc (1987, 1992) and Hooghiemstra,
Keane, and Van De Ree (1988) for detailed understanding of the PSA method for obtain-
ing the state probabilities.

Before leaving this section two issues related to Equation (2) need to be discussed.
The first concerns the determination of fi, and the second the determination of pi(�n).
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Although the formulation presented implies that the value of fi can be different for every i
(in fact, it could easily depend on the state of the system also), in the numerical examples
presented in the rest of the paper it has been assumed that all toll-booths are of the same
kind and hence have the same fi. Thus, μ = Tμi and fi = 1/T.

As mentioned earlier, pi(�n) is the probability that an arriving vehicle chooses toll-
lane i (or the queue for toll-booth i) when the state of the system is �n. In the
absence of a proper model on how people choose a toll-lane, analysts generally
assume that drivers choose the toll-lane with the shortest queue. That is, if S is the
set of toll-lanes (or queues) with the shortest queue length and |S| is the cardinality
of the set S, then under this assumption

pi(�n) = 1/|s| if i [ S
0 otherwise

{
. (3)

The above expression for pi(�n) can be used in the proposed formulation to determine
the state probabilities. However, such a quasi-deterministic (note if |S| = 1 then pi(�n) =
1 or 0) way of looking at pi(�n) is not desirable. Ideally, pi(�n) should be determined
through a proper model of the toll-lane choice process. A good way of modelling
the toll-lane choice process, wherein a driver chooses from a set of mutually exclusive
and collectively exhaustive set of alternatives (or toll-lanes), is through discrete choice
analysis (DCA).

In the DCA, a decision-maker (in this case a driver) is modelled as one who evaluates
each alternative (in this case the queue at a toll-lane) on a utility scale and then chooses the
one that provides the maximum utility. However, the utility is typically understood as a
random quantity (an idea first introduced by Thurstone 1927) and the probability that
an alternative has the greatest utility is assumed to be the probability that the alternative
will be chosen from among all the alternatives. The utility is assumed to be a sum of two
parts: the systematic part, typically represented as a function of certain measurable expla-
natory variables, and a random part. Under specific assumptions about the nature of the
randomness in the utility one gets the Logit model. The interested reader may refer to Ben-
Akiva and Lerman (1985) for a detailed exposition on this topic.

In this paper, the recommended strategy is to determine pi(�n) through a Logit model:

pi(�n) = eVi(�n)∑
∀i
eVi(�n)

. (4)

Here, Vi(�n) is the systematic part of the (scaled) utility function used to determine the
utility of toll-lane i and is estimated using actual observations on the toll-lane choice
process. Extensive data collected from three toll plazas on Indian expressways (more
than 700 choices are observed) are used to estimate Vi(�n). The Vi(�n) obtained from the
data and used in this paper is presented in the section on numerical examples.

3. Determination of state probabilities, P(r, �n)

As mentioned earlier, the PSA method developed and explained in Blanc (1987) is used
here to determine P(r, �n) that satisfies equations like Equation (2) with fi = 1/T and

680 P. CHAKROBORTY ET AL.



pi(�n)given by Equation (4) (pi(�n) given by Equation (3) can also be used). The method
relies on expressing P(r, �n) in Equation (2) as the following power series in terms of ρ:

P(r, �n) = r|�n|
∑1
k=0

rkc(k, �n), (5)

where c(k, �n) are the coefficients of the power series. Using the expression obtained by
substituting P(r, �n)from Equation (5) into Equation (2) and the law of total probability,
one can recursively calculate the coefficients, c(k, �n). The process is described in detail
in Blanc (1987) together with a bilinear mapping approach which helps in the convergence
of the PSA for higher values of ρ. In this, ρ is replaced by the following expression in θ:

r = u

1+ G− Gu
, (6)

where G is a non-negative constant whose value has to be chosen through trial and error
(in a later paper Blanc (1993) provides some ideas as to how G can be chosen). These ideas
have been implemented in this paper through a computer program in order to calculate
the coefficients with some degree of accuracy. Blanc (1993) states that the biggest
problem with this method is not so much computation time but the amount of storage
space required for the coefficients. However, it may be noted that even though storage
space remains the primary concern, computation time is not negligible and increases
sharply with the number of servers (or toll-lanes).

The next section presents results from various numerical examples or cases.

4. Results

This section has two primary purposes: first, to establish the efficacy of the proposed
model by comparing its results with simulation results and results from analytical
methods (that work under some particular assumptions); and, second, to indicate how
the results from the proposed method can be used to design toll plazas.

The results from these cases are divided into two broad categories and presented in the
following two subsections. The first subsection presents results from studies that are aimed
at establishing that the proposed model and its PSA-based solution methodology help
evaluate the steady-state probabilities reasonably accurately. The second subsection pre-
sents results from various cases that are different in terms of the arrival rates, service
rates, etc. The purpose here is to show how the proposed model can be used to determine
the required number of toll-lanes or required size of the queueing area for different input
conditions. The designs obtained from the proposed method are also compared with those
obtained from VISSIM, a commercially available micro-simulation model. The results
show a close match.

4.1. Tests to validate the proposed methodology

As with any numerical scheme, it is important to see how accurately the PSA-based
method used here determines the state probabilities. In order to see whether the
method as well as its implementation is working satisfactorily, two tests are done. The
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first is analytical in nature, whereas in the second VISSIM is used. The results of the second
test are included in the next subsection in order to improve readability.

In the first test case, it is assumed thatpi(�n) = 1/T. Given that arrival and departure pro-
cesses are assumed to be Poisson, this assumption on pi(�n) implies that the queueing
system, in effect, operates as T independent M/M/1 queues with an arrival rate of λ/T
to each of them. Hence, the state probabilities of any of the queues can be obtained ana-
lytically and these could then be compared with the corresponding state probabilities
obtained using the PSA-based method.

It may be noted that the probability of finding a queue (say on toll-lane i) in a particular
state (say, ni) for a given value of ρ, P(r, ni), can be obtained as a marginal distribution
from the state probabilities, P(r, �n) calculated using the PSA-based method. That is,
noting that

P(r, �n) ; P(r, n1, · · · , ni, · · · , nT), (7)

one can obtain the marginal probabilities, P(r, ni) as

P(r, ni) =
∑1
nT=0

· · ·
∑1
ni+1=0

∑1
ni−1=0

· · ·
∑1
n1=0

P(r, n1, · · · , ni, · · · , nT). (8)

Furthermore, since under the assumptions of pi(�n) = 1/T and Poisson arrival and depar-
ture processes the CMQ2S operates as T independent M/M/1 queues, one should expect
that all the marginal distributions obtained using P(r, �n) are identical. That is, P(ρ,n1), P(ρ,
n2),… P(ρ,nT) should all be identical; or in other words, for a given ρ

P(r, n1 = a) = P(r, n2 = a) = · · · = P(r, nT = a) ∀a. (9)

It is observed that marginal probabilities from the PSA method obtained using
Equation (8) satisfy the condition stated in Equation (9). That is, the probability dis-
tributions for all the queues are identical. Table 1 presents a comparison of the state
probabilities calculated using the M/M/1 analysis (arrival rate of λ/T ) with the

Table 1. Comparison of state probabilities.

ni

ρ values

0.4 0.6 0.7 0.8

M/M/1 PSA M/M/1 PSA M/M/1 PSA M/M/1 PSA

0 0.6000 0.6000 0.4000 0.4000 0.3000 0.3000 0.1996 0.2000
1 0.2400 0.2400 0.2400 0.2400 0.2100 0.2100 0.1598 0.1600
2 0.0960 0.0960 0.1440 0.1440 0.1470 0.1470 0.1279 0.1280
3 0.0384 0.0384 0.0864 0.0864 0.1029 0.1029 0.1023 0.1024
4 0.0154 0.0154 0.0518 0.0518 0.0720 0.0720 0.0819 0.0819
5 0.0061 0.0061 0.0311 0.0311 0.0504 0.0504 0.0656 0.0655
6 0.0025 0.0025 0.0187 0.0187 0.0353 0.0353 0.0525 0.0524
7 0.0010 0.0010 0.0112 0.0112 0.0247 0.0247 0.0420 0.0419
8 0.0004 0.0004 0.0067 0.0067 0.0173 0.0173 0.0337 0.0336
9 0.0002 0.0002 0.0040 0.0040 0.0121 0.0121 0.0270 0.0268
10 0.0001 0.0001 0.0024 0.0024 0.0085 0.0085 0.0216 0.0215
11 0.0000 0.0000 0.0015 0.0015 0.0059 0.0059 0.0173 0.0172
12 0.0000 0.0000 0.0009 0.0009 0.0042 0.0042 0.0138 0.0137
13 0.0000 0.0000 0.0005 0.0005 0.0029 0.0029 0.0111 0.0110
14 0.0000 0.0000 0.0003 0.0003 0.0020 0.0020 0.0089 0.0088
15 0.0000 0.0000 0.0002 0.0002 0.0014 0.0014 0.0071 0.0070
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marginal probabilities obtained using Equation (8). The table has only one column for
different ni values since the marginal probabilities for different ni are identical. The
values from the M/M/1 analysis are listed under the columns titled M/M/1 and the
values from PSA approximation of CMQ2S are listed under the columns titled PSA.
As seen from the table, the values are identical up to the fourth decimal place with
slight differences arising for a ρ value of 0.8. At even higher values of ρ (although
not shown here) these differences increase but are within acceptable limits. (Higher
values of ρ are not included since, in general, systems are never designed for values
of ρ higher than 0.8.).

4.2. Applications in toll plaza design and further validation

The primary design parameters at a toll plaza are: (i) the number of toll-lanes (or toll-
booths) that should be provided, (ii) the relative distribution of manual versus auto-
matic toll-lanes (this, however, has not been investigated here) and (iii) the length of
the upstream queue area at the toll plaza (see also Figure 1) so that stopped vehicles
do not spill over to the expressway lanes. The criterion on which these designs are
based is (can be) one of the following: (i) the maximum queue length at the toll
plaza (referred to as the maximum queue length criterion) should be below a user-
defined threshold or (ii) the average waiting time faced by the users of the toll
plaza (referred to as the waiting time criterion) should be below a user-defined
threshold.

Since queue length is a stochastic quantity, while using the maximum queue length cri-
terion, the design parameters should be chosen such that the probability of a queue length
at the toll plaza exceeding the user-defined maximum is below a threshold. The average
waiting time, on the other hand, is a deterministic quantity and can be used directly to
obtain the design parameters. In this case, the design parameters should be chosen such
that the average or expected waiting time of a vehicle at the toll plaza is below a user-
defined threshold average waiting time.

As mentioned earlier, in this paper the required number of toll-lanes or required length
of the upstream queueing area is calculated with pi(�n) given by a logit model (see Equation
(4)). The systematic part of the utility function for a given toll-lane, say i, is assumed to
depend only on the queue length on that lane. That is, Vi(�n), the systematic utility
derived by a driver from toll-lane, i is:

Vi(�n) = kni,

where k is a real constant. The value of k is estimated from more than 700 observations on
toll-lane choice (by drivers) at three different toll plazas in India. The maximum likelihood
estimate of k is −0.25.

Furthermore, the number of toll-lanes or the length of the upstream queueing area
calculated here assumes that all the toll-lanes are of the same kind (even though the
steady-state queueing equation of Equation (2) is generic and can handle different types
of toll-lanes). This restriction became inevitable because the Vi(�n) is estimated from
data available for only one kind of toll-lanes, namely manual.

In the following, the calculation procedures and the associated tables/figures for the
number of toll-lanes and the length of upstream queueing area are presented.
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4.2.1. Determination of number of toll-lanes using the maximum queue length
criterion and further validation
In this section, the adequate number of toll-lanes (recall that all are of the same kind) at
a toll plaza based on the maximum queue length criterion is calculated. It is proposed
that the number of toll-lanes should be such that the probability of any of the queue
lengths being greater than a user-defined ‘acceptable queue length, Q’ is less than some
threshold, α.

Let the probability of any queue length being greater than Q, be Ω. This probability
depends on λ, μi and T (since the state probabilities depend on ρ) and Q. Hence, Ω is
written as Ω(λ, μi, T, Q) and is given as:

V(l, mi, T , Q) =
∑
∀�n[N

P(r, �n), (10)

where set N is defined as

N ; {n1, n2, · · · , nT |n1 . Q or n2 . Q · · · or nT . Q},

and state probabilities, P(r, �n) are determined using the procedure described in the pre-
vious sections.

Thus, one has to determine the minimum value of T, say T*, which satisfies Ω(λ, μi, T,
Q) ≤ α. It may be noted that the reason for introducing λ and μi in place of ρ is that, from
an engineering perspective, it is more natural to talk about arrival rates and service rates.
The values of T* for different values of λ, μi and Q and for α = 0.05 are provided in Tables
2–6. Also note that, since all the toll-lanes are the same, all μis are also same. Another point
that needs to be mentioned is that for the computation resources available at the disposal
of the authors and given the computation-/memory-intensive nature of the PSA-based
solution algorithm, the state probabilities could be accurately determined for up to a
maximum of eight servers (toll-lanes). Hence, in many cases the table reads ‘≥ 9’ indicat-
ing that results suggest that eight servers are not sufficient.

In order to validate the results further, an application on VISSIM is developed to simu-
late the queueing at the toll plazas. In this, only automobiles are considered and it is

Table 2.Minimum number of toll-lanes required (T*) when using the maximum queue length criterion;
μi = 250 vph (per toll-lane).

Q

λ (vph)

250 500 750 1000 1250
S, PSA S, PSA S, PSA S, PSA S, PSA

3 2, 3 4, 5 5, 8 7, ≥ 9 8, ≥ 9
4 2, 2 3, 4 5, 6 6, 8 7, ≥ 9
5 2, 2 3, 3 4, 5 6, 7 7, 8
6 2, 2 3, 3 4, 4 6, 6 6, 7
7 2, 2 3, 3 4, 4 5, 5 6, 6
8 2, 2 3, 3 4, 4 5, 5 6, 6
9 2, 2 3, 3 4, 4 5, 5 6, 6
10 2, 2 3, 3 4, 4 5, 5 6, 6
11 2, 2 3, 3 4, 4 5, 5 6, 6
12 2, 2 3, 3 4, 4 5, 5 6, 6
13 2, 2 3, 3 4, 4 5, 5 6, 6
14 2, 2 3, 3 4, 4 5, 5 6, 6
15 2, 2 3, 3 4, 4 5, 5 6, 6
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assumed that they choose a toll-lane based on the probabilities given in Equation (4). The
simulation results are used to determine the number of toll-lanes using the maximum
queue length criterion in much the same way it is done for the PSA procedure. Tables
2 and 3 provide the values of T* obtained using simulation along with the values obtained
using the PSA-based method for CMQ2S (comparison for only two values of μ are pre-
sented to avoid repetitions and also because the comparisons presented allow one to
infer that the values based on the proposed method match well with the simulated
values, especially for realistic values of Q). In these two tables, each cell contains two
values of T* reported in the format S, PSA; the value under S is from the VISSIM-based
simulation while that under PSA is from the PSA-based method for the CMQ2S.

Tables 2–6 show that T* behaves as per expectations; it increases as λ increases and
decreases as μi increases or Q increases. These results can be directly used to determine
the minimum number of toll-lanes required at a toll plaza given the arrival rate, service
rate and acceptable queue length values. For example, for a service rate of 500 vph
(per toll-lane), arrival rate of 1500 vph and a Q value of 4, the minimum number of
toll-lanes required, T*, can be read from Tables 3 as 6.

Table 3.Minimum number of toll-lanes required (T*) when using the maximum queue length criterion;
μi = 500 vph (per toll-lane).

Q

λ (vph)

250 500 750 1000 1250 1500 1750 2000
S, PSA S, PSA S, PSA S, PSA S, PSA S, PSA S, PSA S, PSA

3 1, 1 2, 3 3, 4 3, 5 4, 7 5, 8 5, ≥9 6, ≥ 9
4 1, 1 2, 2 2, 3 3, 4 4, 5 4, 6 5, 7 5, 8
5 1, 1 2, 2 2, 3 3, 3 4, 4 4, 5 5, 6 5, 7
6 1, 1 2, 2 2, 3 3, 3 3, 4 4, 4 5, 5 5, 6
7 1, 1 2, 2 2, 2 3, 3 3, 4 4, 4 5, 5 5, 5
8 1, 1 2, 2 2, 2 3, 3 3, 4 4, 4 5, 5 5, 5
9 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 5 5, 5
10 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5
11 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5
12 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5
13 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5
14 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5
15 1, 1 2, 2 2, 2 3, 3 3, 3 4, 4 4, 4 5, 5

Table 4.Minimum number of toll-lanes required (T*) when using the maximum queue length criterion;
μi = 750 vph (per toll-lane).

Q

λ (vph)

500 750 1000 1500 2000 2500 3500

3 2 3 3 5 7 ≥ 9 ≥ 9
4 2 2 3 4 5 7 ≥ 9
5 1 2 3 3 4 5 7
6 1 2 2 3 4 5 7
7 1 2 2 3 4 5 6
8 1 2 2 3 4 4 6
9 1 2 2 3 4 4 6
10 1 2 2 3 4 4 6
11 1 2 2 3 3 4 6
12 1 2 2 3 3 4 6
13 1 2 2 3 3 4 6
14 1 2 2 3 3 4 6
15 1 2 2 3 3 4 6
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4.2.2. Determination of number of toll-lanes using the waiting time criterion
The number of toll-lanes at a toll plaza can also be determined as the minimum number of
toll-lanes required to ensure that the expected waiting time of vehicles at the toll plaza is
less than some user-defined threshold, W. The expected waiting time in the system (i.e.
expected time between the time of leaving the toll plaza and the time of joining a
queue/toll-lane at the toll plaza), E[W ], can be obtained as:

E[W] = E[|�n|]
l

, (11)

where E[|�n|] is the expected number of vehicles queued in the system (or the toll plaza)
and can be calculated easily from P(r, �n). One can refer to any standard text book on
stochastic processes, like Taylor and Karlin (1984), for a discussion on (i) how to
obtain expected number in the system, E[|�n|] from the state probabilities, and (ii) the
relation presented as Equation (11). Of course, E[W ] is a function of (λ, μi, T ) because

Table 5.Minimum number of toll-lanes required (T*) when using the maximum queue length criterion;
μi = 1000 vph (per toll-lane).

Q

λ (vph)

500 750 1000 1500 2500 3500 4500

3 2 2 3 4 7 ≥9 ≥9
4 1 2 2 3 5 7 ≥9
5 1 2 2 3 4 6 7
6 1 1 2 3 4 5 6
7 1 1 2 2 4 5 6
8 1 1 2 2 4 5 6
9 1 1 2 2 3 5 5
10 1 1 2 2 3 4 5
11 1 1 2 2 3 4 5
12 1 1 2 2 3 4 5
13 1 1 2 2 3 4 5
14 1 1 2 2 3 4 5
15 1 1 2 2 3 4 5

Table 6.Minimum number of toll-lanes required (T*) when using the maximum queue length criterion;
μi = 1250 vph (per toll-lane).

Q

λ (vph)

500 750 1000 1500 2500 3500 4500

3 1 2 2 3 5 8 ≥9
4 1 2 2 3 4 6 7
5 1 1 2 2 3 5 6
6 1 1 2 2 3 4 5
7 1 1 2 2 3 4 5
8 1 1 2 2 3 4 5
9 1 1 2 2 3 4 5
10 1 1 2 2 3 4 5
11 1 1 2 2 3 4 4
12 1 1 2 2 3 4 4
13 1 1 1 2 3 3 4
14 1 1 1 2 3 3 4
15 1 1 1 2 3 3 4
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the state probabilities depend on them. As before, E[W ] is written as E[W(λ, μi, T )].
Hence, one has to determine the minimum value of T, say T*, that satisfies E[W
(λ, μi, T )] ≤ W.

Figures 2–6 provide E[W ] versus λ plots for different μi values. These figures can be
used to determine the minimum number of toll-lanes required, T*, for any given value
of W, λ and μi. The procedure is as follows: (i) for the given value of μi choose the appro-
priate figure, (ii) draw a line parallel to the abscissa at the value of average waiting time per

Figure 2. Chart to determine minimum number of toll-lanes required when using the expected waiting
time criterion; μi = 250 vph (per toll-lane).

Figure 3. Chart to determine minimum number of toll-lanes required when using the expected waiting
time criterion; μi = 500 vph (per toll-lane).
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vehicle =W, (iii) draw a line parallel to the ordinate axis at the given value of λ; let these
two lines intersect at A (iv) locate the plot (of average waiting time per vehicle versus λ)
which is immediately to the right of A, and (v) use the T value associated with this plot
as T*. For example, in order to determine the number of toll-lanes for a threshold
waiting time of 30 s, arrival rate of 800 vph and service rate of 250 vph (per toll-lane),
the process of determining A is shown in Figure 2. Hence, for this case, from Figure 2,
T* is 5.

Figure 4. Chart to determine minimum number of toll-lanes required when using the expected waiting
time criterion; μi = 750 vph (per toll-lane).

Figure 5. Chart to determine minimum number of toll-lanes required when using the expected waiting
time criterion; μi = 1000 vph (per toll-lane).
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4.2.3. Determination of the length of upstream queueing area using the maximum
queue length criterion
The process of determining Ω(λ, μi, T, Q) was explained (see Equation (10)) in the pre-
vious section. In that section, given values of λ, μi, Q, and threshold probability α, the
minimum value of T that satisfied Ω(λ, μi, T, Q) ≤ α was determined as T*. Another
way of using the information on Ω(λ, μi, T, Q) is to determine the minimum value of
Q, say Q* that satisfies Ω(λ, μi, T, Q) ≤ α for given values of λ, μi, T and α. The practical
significance of knowing Q* arises when the number of toll-lanes are fixed or cannot be

Figure 6. Chart to determine minimum number of toll-lanes required when using the expected waiting
time criterion; μi = 1250 vph (per toll-lane).

Table 7. Minimum length of the toll-lanes when using the maximum queue length criterion; μi =
250 vph (per toll-lane).

T

λ (vph)

250 500 750 1000 1250

3 3 5 – – –
4 2 4 6 – –
5 2 3 5 7 –
6 2 3 4 6 7
7 2 3 4 5 6
8 2 3 3 4 5

Table 8. Minimum length of the toll-lanes when using the maximum queue length criterion; μi =
500 vph (per toll-lane).

T

λ (vph)

250 500 750 1000 1500 2000 2500

3 2 3 4 5 – – –
4 2 2 3 4 6 – –
5 1 2 3 3 5 7 –
6 1 2 3 3 4 6 7
7 1 2 2 3 4 5 6
8 1 2 2 3 3 4 5
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increased beyond a certain value due to limited space and/or other resource constraints. In
such situations, or even otherwise, one may have to determine the minimum length of the
upstream queueing area (see Figure 1) so that chance of stopped vehicles extending (or
overflowing) into the travel lanes is below a certain threshold. The value of Q* provides
the required minimum length when the threshold overflow probability is α.

Values ofQ* for different values of λ, μi and T and α = 0.05 are provided in Tables 7–11.
For example, for a service rate of 750 vph (per toll-lane), arrival rate of 2000 vph and a T
value of 5, the required minimum length of the toll-lanes,Q*, can be read from Table 9 as 4
vehicle-lengths. In order to convert Q* in vehicle-lengths to Q∗

ℓ , in length units, the
expression in Equation (12), where pi and Li are the proportion of vehicle type i in the
stream and the length of vehicle type i, respectively, can be used. This expression
assumes that the fraction of different types of vehicles in any queue is equal to their cor-
responding share in the traffic stream of the expressway:

Q∗
ℓ =

∑
∀i

piLi

( )
Q∗. (12)

Table 10. Minimum length of the toll-lanes when using the maximum queue length criterion; μi =
1000 vph (per toll-lane).

T

λ (vph)

500 750 1000 1500 2500 3500 4500

3 2 2 3 4 9 – –
4 2 2 2 3 5 10 –
5 1 2 2 3 4 6 9
6 1 2 2 3 4 5 6
7 1 2 2 2 3 4 5
8 1 2 2 2 3 4 5

Table 9. Minimum length of the toll-lanes when using the maximum queue length criterion; μi =
750 vph (per toll-lane).

T

λ (vph)

500 750 1000 1500 2000 2500 3500

3 2 3 3 5 11 – –
4 2 2 3 4 5 8 –
5 2 2 3 3 4 5 –
6 2 2 2 3 4 5 7
7 2 2 2 3 3 4 5
8 1 2 2 3 3 4 5

Table 11. Minimum length of the toll-lanes when using the maximum queue length criterion; μi =
1250 vph (per toll-lane).

T

λ (vph)

500 750 1000 1500 2500 3500 4500

3 1 2 2 3 5 – –
4 1 2 2 3 4 6 11
5 1 2 2 2 3 5 6
6 1 1 2 2 3 4 5
7 1 1 2 2 3 4 4
8 1 1 2 2 3 3 4
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5. Conclusions

Traffic flow at a toll plaza needs to be studied in terms of how queues develop and dis-
sipate. However, there are no realistic queueing theory-based models of a toll plaza.
Attempts have been made in the past; but these attempts either make incorrect assump-
tions of the queue behaviour (like using multiple server queueing models, such as
M/M/S, that tacitly assume a single queue) or are restricted to analysis of toll plazas
with only two toll-lanes. The reason for this could possibly be that an analytical
model of the queueing observed at a toll plaza, and referred to here as a CMQ2S, is dif-
ficult to solve.

The queueing model of a toll plaza proposed here (CMQ2S) incorporates the fact that
there are multiple parallel queues at a toll plaza and that arrival to a queue (toll-lane) is
dependent on the queue lengths of all the queues. The paper has implemented a PSA-
based solution strategy to solve the governing equations of a CMQ2S. The solution pro-
vided probability distributions for the queues at the toll-lanes of a toll plaza. The results
obtained in this paper were validated using analytical solutions of some special cases of
the CMQ2S and simulation results from various scenarios using an application developed
in VISSIM (a commercially available micro-simulation model). These validation studies
showed that the probability distributions obtained using the PSA-based solution method-
ology of CMQ2S are reliable.

The paper also showed how the distributions obtained here can be used to design a
more efficient toll plaza. For example, the probabilities can be used to gain an insight
into how changes in service rate affects the waiting time or the queue lengths. Such an
understanding can help decide the level of service that is required at a particular toll
plaza. The distributions can also be used to decide how many toll-booths are required
at a plaza in order to provide a certain level of service. Decisions on the size of the
upstream queueing area, another critical design parameter of a toll plaza, can also be
aided by the analysis given here. One can, for instance, determine how long should
such queueing areas be so that queues developing at the toll plaza do not overflow into
the approach road. In summary, the proposed analysis provides the transportation engin-
eer with a tool that can be used to obtain and evaluate various alternative designs for a toll
plaza.

Although the paper presents a rare attempt to rigorously analyse the queueing at a mul-
tiple (more than two) toll-lane toll plaza, there are two areas that require improvements.
First, the computer implementation of the solution method needs to be made more effi-
cient so that toll plazas with more than eight toll-lanes can also be analysed with reason-
able levels of accuracy and computation resources. Second, results with more than one
type of toll-lane need to be obtained; although the CMQ2S model proposed here can
handle more than one type of toll-lane, numerical results could not be obtained due to
lack of multinomial choice models for driver behaviour at toll plazas with more than
one type of toll-lane.
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