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ABSTRACT1
Early detection of incidents is one of the key step to reduce incident-related congestion. With the2
increasing usage of GPS based navigation, promising data-scalable crowdsourced probe data is3
now available which can provide near-real time traffic speed information. This study utilizes such4
extensive historical datasets (approximately 500 GB) to gain useful insights on the normal traffic5
pattern of each segment. The insights come in the form of speed threshold for different time of the6
day and days of week for each segment. Thereafter, the anomalous traffic behaviour are classified7
as incidents. The dynamic thresholds developed for each segment simplifies the calibration steps8
that is often required when applying a model to a different dataset. Also, in this study, two alter-9
natives of the traditional Standard Normal Deviate (SND) based incident detection algorithm are10
tested. The proposed algorithms can handle the masking effect of SND method where the outliers11
inflate the mean and standard deviation values and result in lower threshold values and in turn,12
lower detection rate. The high detection rate (94-97%) obtained by these algorithms compared to13
the SND method (83%) shows the efficacy of the models. Although higher false alarm rate (FAR)14
are observed for these models, but their values (4 false alarms/day) are quite lower than the accept-15
able FAR (10 false alarms/day) reported in previous literature (1).16

17
Keywords: traffic incident detection, outlier mining, big data18
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INTRODUCTION1
Traffic congestion has been defined by US Department of Transportation (USDOT) as "one of2
the single largest threats" to the economic prosperity of the nation (2). The cost of congestion in3
2014 was calculated to be $160 billion for the top 471 urban areas of United States. This included4
6.9 billion hours of wasted time and 3.1 billion gallons of wasted fuel (3). A major contributor5
to this congestion are traffic incidents. Schrank and Lomax (4) showed that implementation of6
improved incident management procedures in 272 out of 439 urban areas resulted in reduction of7
143.3 million hours of incident-related congestion and $3.06 million in 2007.8

Early detection of incident is one of the key step for improved incident management.9
Hence, significant efforts have been devoted in the past for development of accurate and fast auto-10
matic incident detection (AID) algorithms. Researchers have used pattern recognition algorithms,11
outlier mining methods, artificial neural networks, fuzzy set theory, genetic algorithms, wavelet12
transformation and other machine learning methods for traffic incident detection (5). However,13
a nationwide survey on deployment of AID algorithms in Traffic Management Centers (TMC)14
showed that 90% of survey respondents feel that the current AID algorithms are inappropriate15
for use either in present (70%) or in future (20%) (1). The two major reasons behind disabling of16
AID algorithms in TMCs are difficulty in algorithm calibrations and unacceptable false alarm rates17
when deployed in large scale. Thus, there is a significant need to revisit the AID algorithms and18
develop an algorithm which can address these major issues.19

Automation of calibration process of AID algorithms can resolve one of the major hin-20
drances of deployment of AID algorithms in TMCs. However, as pointed out by Castro-Neto21
et al. (6), development of an incident dataset with accurate start and end time of incidents is time-22
consuming and often requires manual investigation. This makes the calibration of AID algorithms23
even more difficult for TMC personnels. In this paper, the main goal is to develop an AID al-24
gorithm that can extract maximum information from the traffic data to generate the normal travel25
pattern of each segment. Thereafter, the anomalous behaviour can be classified as incidents and26
hence sidestep the need for algorithm training with incident dataset. In the era of big data, traffic27
parameters (e.g. speed, volume, etc.) are stored for each and every segment across 24× 7 hours28
and 365 days. For example, in Iowa state, probe vehicle data of 23,000 segments spread across29
the entire state are archived every day in one minute interval. This results in generation of approx-30
imately five gigabytes of daily traffic data, which in turn produce around two terabytes of traffic31
data in an annual basis. And, for traffic incident detection, traffic data needs to be collected and32
processed continuously for each segment. With the cheap data storage technologies now available,33
it makes more sense to store the entire dataset and use it to gain useful insights on the performance34
of the road network. These insights can help in developing more efficient AID algorithms. Thus,35
incident detection turns out to be an important field in the area of transportation which can get36
direct benefits from the big data analytics.37

This paper proposes detecting incidents considering them as outliers or anomalies in the38
continuous traffic data stream. The next section gives an overview of the past research done on AID39
algorithms and performance measures used to evaluate the algorithm. The third section provides40
description of the data used in this paper. Section 4 gives the details of the research methodology41
followed by the detailed results in Section 5. The final section provides a summary of the paper42
and outlines the future work.43
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BACKGROUND & RELATED WORK1
Performance Measures2
The following performance measures, used most commonly in AID studies (5) are also used in this3
paper.4

Detection Rate (DR) is defined as the ratio of the total number of incidents detected to the5
total number of incidents actually occurred, given by Equation 1.6

DR =
Total number of detected incidents
Total number of actual incidents

×100% (1)

False Alarm Rate (FAR) is defined as the ratio of the total number of false alarms to7
the total number of algorithm applications, given by Equation 2. The total number of algorithm8
applications implies the number of times the algorithm is applied during a given period. For9
example, if the traffic state is checked once every minute (as done in this paper) and five of them are10
reported as false alarms, then the FAR is 8.3%. It should be noted here that the FAR is computed11
over the entire system rather than the average for each segment and hence is a function of the12
number of road segments analysed.13

FAR =
Total number of false alarm cases

Total number of algorithm applications
×100% (2)

In addition to the FAR given in Equation 2, FAR in terms of number of false alarms per day14
is also reported in this study. This is because as per the survey results of Williams and Guin (1),15
TMC personnels’ perspective of definition of FAR is different from the traditional definition (given16
by Equation 2) and the maximum acceptable false-alarm rate is on an average ten false alarms per17
day.18

Mean Time to Detect (MTTD) is defined as the ratio of the total time elapsed between19
detecting incidents to the number of incidents detected, given by Equation 3.20

MT T D =
Total time used to detect incidents
Total number of incidents detected

×100% (3)

Related Work21
Significant research efforts have been devoted since the last five decades for development of effi-22
cient AID algorithms. AID algorithms can be divided into two basic categories based on the type of23
traffic data collection: roadway-based algorithms and probe-based algorithms (5). Roadway-based24
algorithms use fixed detector data installed at specific points in the road segments whereas probe-25
based algorithms use probe vehicle data for detecting incidents. In this paper, probe vehicle data26
has been used for traffic incident detection. Hence, a detailed literature review on probe-based AID27
algorithms has been presented next. Summary of roadway-based AID algorithms can be found in28
Parkany and Xie (5) study.29

AID algorithms can be further classified into two broad categories based on the method-30
ology used to detect incidents (a) algorithms that compare the present traffic parameter values31
with the historical values observed under similar conditions (e.g., time of day, day of week) and32
(b) present traffic parameters are compared with the immediate previous N intervals to trigger an33
incident alarm. In either of these cases, the feature vectors are compared with a predetermined34
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threshold for incident detection. Also, a persistence test is usually performed to confirm the pre-1
liminary detected incidents before triggering incident alarm (7). This is done to eliminate the false2
alarms caused due to sudden spurious traffic fluctuations. Probe-based AID algorithms that use3
historical traffic parameter values for incident detection are presented next followed by a discus-4
sion of the algorithms that utilizes sudden change of immediate traffic values during an incident to5
trigger an alarm.6

Arterial traffic incident detection algorithms developed in the ADVANCE operational test7
by Sethi et al. (8) and Sermons and Koppelman (9) used discriminant analysis techniques for8
incident detection. Linear relationship of predictor variables were developed to distinguish incident9
conditions from incident-free ones. These algorithms use travel time and speed of a particular link10
and its immediate upstream link to trigger incident alarms. Balke et al. (10) considered traffic11
incidents as outliers in data stream and used the principle of standard normal deviates (SND) to12
indicate the confidence intervals for incident-free travel time conditions. Historical average travel13
time were computed for each link by time of day (in 15-min intervals) and day of week to denote14
normal travel conditions.15

Algorithms were also developed to detect traffic incidents comparing the present conditions16
with the immdeiate past. For example, Parkany and Bernstein (11) algorithms were based on the17
principle that temporal and spatial discrepancies of travel time and headways and frequent lane18
switch maneuvers can be observed when traffic switches from incident-free to incident conditions.19
Waterloo algorithm proposed by Hellinga and Knapp (12) were based on the assumption that the20
travel time are log-normally distributed, rather than normally distributed as assumed by Balke et al.21
(10). And, the confidence limit in Waterloo algorithm were based on the travel time observed in22
previous N intervals instead of using the historical average travel time for the required interval of23
the day. The bivariate analysis model (BEAM) developed by Li and McDonald (13) use average24
travel time of probe vehicles and differences in travel time between adjacent time intervals to25
distinguish an incident condition from incident-free one. Zhu et al. (14) used speed differences26
between adjacent sections and adjacent time intervals as feature vector for mining incidents as27
outliers from non-incident conditions. Recently, Li et al. (7) extended the SND algorithm by28
introducing two modifications: (a) weighted average and standard deviates of the traffic parameter29
values are used based on the traffic flow, and (b) in order to eliminate the false alarms caused by30
acute fluctuations of SND values, if the coefficient of variation of the traffic parameter is below31
a predetermined threshold, the the SND value of the previous time interval is used to replace the32
SND of the current time interval.33

In this paper, traffic incidents are considered as anomalies/outliers in continuous traffic data34
stream and are detected by comparing them with the historical averages. The basic reason behind35
adopting this technique is that it will allow to utilize the massive historical dataset to gain useful36
insights of the traffic pattern of each link thereby helping in detecting incidents. With the increasing37
usage of navigation applications installed in mobile phones, promising data-scalable crowdsourced38
probe data is now available which provide near real-time traffic speed information. Li et al. (15)39
used such crowdsourced probe data provided by INRIX (16) to identify shockwave boundaries40
while Park and Haghani (17) developed models for detecting secondary incidents utilizing same41
data source. So, it makes sense to also develop AID algorithms utilizing such extensive data42
source. In traditional AID algorithms, sample data are used for developing the models hoping43
that the model could be generalised and applied to every other segment. However, this makes the44
calibration and fine tuning of the model parameters even more difficult. Utilising data of each and45
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every segment will help making the parameters dynamic and can be continuously trained from new1
incoming data.2

Also, in this study, alternatives of the traditional SND algorithm are applied to detect out-3
liers. A basic disadvantage of SND algorithm is that it is impacted heavily by the presence of4
outliers. So, in this study, two other outlier detection methods are applied and compared with the5
traditional SND algorithm to find out the efficacy of the proposed methods.6

DESCRIPTION OF DATA7
Probe vehicle speed data from 1st April, 2016 to 7th July, 2016 of Des Moines region, Iowa is8
used in this study. The study region comprises of the Interstates 35, 80 and 235 and is shown in9
Figure 1. The Des Moines region is the busiest region on Iowa roadways experiencing significant10
amount of congestion and incidents throughout the year. The details of traffic volume variation for11
each of these roads are shown later in Section 5. Besides this, video cameras are also installed in12
this region which helps in verification of incident data. Two hundred and fifty-four segments are13
located in this region covering 164 miles. The length of the segments vary from 0.2 miles to 1.514
miles.15

FIGURE 1 Location of the segments used

Speed data from 1st April to 30th June are used as the primary dataset to compute the thresh-16
old speed values for each segment (detailed procedure to obtain threshold speed values are given17
in Section 4). Approximately 500 GB of traffic data are analysed for determination of threshold18
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speed values. Remaining dataset of 1st July to 7th July, 2016 is used as the validation set to verify1
incidents reported by proposed algorithm and incident dataset maintained by the local TMC. The2
incident database maintained by TMC records the location of incident, start and end time of inci-3
dent and type of incident (e.g., accident, stalled vehicle, slow traffic, etc.). Apart from the incident4
database, each of the incidents detected by the proposed algorithm are also manually verified by5
video cameras installed in the study region. A total of 70 lane-blocking incidents causing disrup-6
tion to traffic were reported in the study region during the one-week validation period. However,7
the incident database also has records of incidents which didn’t caused any disruption to traffic8
(54% of the total incidents). Since AID algorithms relying solely on speed data cannot detect in-9
cidents which had no significant effect on traffic speed, these incidents were excluded from the10
incident dataset.11

The probe-based speed data used in this study is provided by INRIX (16) with a reporting12
frequency of one-minute. Details of this cloud-based speed data can be found in Li et al. (15) study.13
Reliability of the speed data is dependent on the number of probe vehicles available, which in turn14
depends on the flow volume. Confidence score and C-value are two parameters provided by INRIX15
to indicate the data quality of the reported average speed of a particular segment. Confidence score16
of 30 indicates that the data is generated exclusively from real-time data sources while a score of17
10 indicates that historical data is used to report the speed. When a mix of the two sources are18
used, a score of 20 is provided. The C-value is used to provide an additional degree of confidence19
to the real-time data. The C-value is reported only when the confidence score is equal to 30. In20
this paper, the reported speed data is considered to be reliable real-time speed data and used for21
further analysis only when the confidence score is equal to 30 and C-value is also greater than 3022
(as suggested by Haghani et al. (18)).23

METHODOLOGY24
Traffic incidents have been often considered as outliers/anomalies in the continuous data stream.25
The common strategy applied to detect the anomalous traffic behaviour is using the SND algo-26
rithm. However, as stated earlier in Section 2, the SND algorithm is impacted heavily by the27
presence of outliers or incidents. This issue can be resolved by removing all incident-related data28
points before calculating the average and the standard deviation values. However, this will lead29
to application of semi-supervised learning instead of unsupervised learning which requires infor-30
mation of all incidents occurring in the study region over the entire study period. This is difficult31
because development of an accurate incident dataset is very time-consuming and cumbersome32
manual investigation is required in most cases (6). Particularly, information of the accurate start33
time and end time of incidents are often hard to get which makes the calibration process very dif-34
ficult. However, alternate outlier analyses methods exist which can cater the affect of outliers for35
calculating the threshold. Detailed description of such outlier methods and their modifications to36
make them work as AID algorithms are discussed next.37

Univariate Outlier Analysis38
Univariate outlier analysis is the simplest method of detecting outliers where the output depends39
only on a single variable. Fundamentally, univariate outlier detection procedures involve selecting40
a reference value x0 and a measure of variation ζ from the data sequence xk (19). Then, data point41
xk is said to be an outlier if it satisfies Equation 4,42
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|xk− x0|> tζ (4)

where, t is the threshold parameter.1
Different univariate outlier detection procedures exist depending on the choice of x0 and ζ .2

The three most common techniques are given below:3
1. SND rule: x0 = x̄,ζ = σ̂ ;4
2. MAD (Maximum Absolute Deviation) rule: x0 = x′,ζ = S;5
3. IQD (Inter-quartile distance) rule: x0 = x′,ζ = Q;6

where, x̄ is the sample mean, x′ is the sample median, σ̂ is the sample standard deviation, S is the7
MAD scale estimator and Q is the IQD.8

The MAD and IQD are defined in Equations 5 and 6 respectively.9

S =
Median{|xk− x0|}

0.6745
(5)

Q =
x〈0.75〉− x〈0.25〉

1.35
(6)

where, x<0.75> is the upper quartile i.e., 75th percentile and x<0.25> is the lower quartile i.e., 25th10
percentile. The factors 0.6745 and 1.35 are used to make the S and Q unbiased estimators of the11
standard deviation, (σ̂ ) (19).12

Each of these methods have its own advantages and disadvantages. The basic disadvantage13
of the SND rule is that the x0 and ζ parameters are influenced heavily by the presence of outliers,14
the phenomenon known as masking. This results in making the ζ parameter (i.e. σ̂ in this case)15
very high and thus making it hard to detect outliers. Or in other words, this results in having a16
low detection rate (DR) of incidents. The MAD and IQD methods do not suffer from this problem.17
However, both these methods suffer from a different phenomenon, namely swamping. In swamp-18
ing, the ζ value becomes zero if more than 50% of the data values xk have same value. This will19
lead to declaring any value different from the median as an outlier, irrespective of its distance from20
the median. For example, if the median speed value is 60 mph, the current speed value of 59 mph21
will also be declared as outlier since the ζ is zero in case of swamping. This will result in a very22
high value of FAR in the case of traffic incident detection. However, for AID algorithms, we can23
take advantage of the fact that an alarm should be triggered only in cases when congestion has24
occurred. As per FHWA guidelines, congested conditions is said to occur in freeways when the25
speed is less than 45 mph (20). So, typically alarm should not be triggered when speed is higher26
than 45 mph. Thus, it eliminates the false alarms which can trigger in swamping cases, where the27
ζ parameter is zero and the median speed value is quite high (greater than 45 mph).28

Normal traffic condition for each segment varies depending on the time of day, day of29
week, weather conditions, etc. For univariate outlier analysis, the x0 and ζ values are computed30
from historical speed data of each segment for each 15-min period for each day of the week (similar31
to Balke et al. (10) study). These are denoted by xd,p

0,s and ζ
d,p
0,s where, s denotes the segment, d32

denotes day of the week (e.g. Monday, Tuesday, etc.) and p denotes time period of the day divided33
in 15 minutes interval (e.g. 12:00 PM to 12:15 PM, 12:15 PM to 12:30 PM, etc.). Thus, for the34
SND edit rule, the x0 and ζ are denoted as x̄d,p

0,s and σ̂
d,p
0,s respectively and can be determined as35

given in Equations 7 and 8 respectively.36
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x̄d,p
0,s =

∑∀k xd,p
k,s

∑∀k k
(7)

σ̂
d,p
0,s =

1
∑∀k k ∑

∀k∈(d,p,s)

(
xd,p

k,s − x̄d,p
0,s

)2
(8)

Similarly, the x0 and ζ for MAD and IQD methods are also calculated. In this paper,1
Apache Pig Latin is used for computation of these parameters for each segment from the respective2
historical data of 1st April, 2016 to 30th July, 2016. This required processing of approximately 5003
GB of data which is not possible to process via traditional single CPU machines. For this reason,4
Pig Latin is used. It is a high level Map-Reduce (MR) language to run MR jobs on Hadoop cluster.5

The next parameter to be determined for univariate outlier analysis is the threshold param-6
eter, t. Usually, the threshold parameter is determined based on cross validation set, which in this7
case will be speed data observed during incidents. Extensive research has been done in the past8
for determination of threshold parameter from cross validation set e.g., F1 score, etc. However,9
determination of threshold parameter from cross validation data will mean that in order to apply10
proposed methodology to a new site, incident data will also be required for that site along with the11
traffic speed data. However, as discussed earlier, it is difficult to get incident dataset with accurate12
start and end time of incidents. Moreover, every segment in the proposed methodology has been13
treated separately and x0 and ζ values for each segment are determined independently. However,14
it is never possible to expect each segment experiencing incidents which can be used to determine15
threshold parameter for it. For these reasons, the threshold values commonly used for outlier detec-16
tion for the above mentioned three methods (19) are also used in this paper. The threshold values17
used for each of these three methods are given in Table 1. The threshold speed values obtained for18
each 15-min time period over all weekdays for each segment were used to trigger incident alarm.19
Alarm is triggered when input speed value is lower than the computed threshold speed value for20
consecutive three minutes for the same segment. This is done to reduce the alarms triggered due21
to sudden noise in incoming speed data.22

TABLE 1 Threshold values used for outlier detection by each method
Method Threshold value used (t)

SND 3
MAD 3
IQD 2

RESULTS23
Figure 2 shows the variation of threshold speed values of a typical segment for Thursday. The24
regular congestion during AM peak hours (7 AM to 9 AM) and PM peak hours (4 PM to 6 PM)25
resulted in low threhsold speed values for those time period. Also, a nearby workzone scheduled26
during the night hours affected threshold speed value for night time (9 PM to 6 AM). The figure27
also shows that the SND method being more suspectible to outliers gives lower threshold values28
compared to the values obtained using the other two methods (i.e, IQD and MAD methods).29
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FIGURE 2 Speed Threshold for a typical segment

Figure 3 shows the average speed threshold variation for all the segments in the study1
region. It should be noted that threshold calculation is done for each segment individually and2
used for incident detection. However, for brevity, the average threshold variation for each road is3
shown here. Similar to Figure 2, threshold speed computed by SND method are lowest while that4
obtained by MAD method are highest. However, the MAD and IQD threshold values are often5
quite close to each other.6

I-235 caters the heaviest traffic among all the four interstates covered in this study. An7
average daily traffic (ADT) of 109,472 vehicles was reported in I-235 during the study period.8
The downtown traffic of Des Moines produce heavy congestion during the weekdays peak hours9
in I-235 and I-35/80. Figure 4 shows the average hourly variation of traffic volume of the study10
region. The heavy traffic in I-235 and I-35/80 resulted in low threshold speed values (as shown in11
Figure 3) during the peak hours for the same. And low traffic volume in I-35 and I-80 resulted in12
speed threshold of 45 mph (which is taken as the speed threshold to detect congestion) for most of13
the time for IQD and MAD methods.14

The threshold speed values obtained for each segment from the historical dataset is used for15
detecting incidents. The DR, FAR and MT T D values obtained for each of the three methods are16
given in Table 2. Table 2 shows that the IQD and MAD methods achieve DR significantly higher17
compared to the conventional SND method. Even though the FAR is lowest in SND, however, the18
FAR obtained for all the three methods are quite lower than the acceptable false alarm rate stated in19
Williams and Guin (1) study, which is equal to ten false alarms per day. The MT T D obtained from20
MAD is lowest while that obtained from SND method is highest. In this conetxt, it should be noted21
that the MT T D obtained from each of the three algorithms are quite higher from those reported in22
previous literature (in order of two to seven minutes). (21). However, the study of Adu-Gyamfi23
et al. (22) showed that there is an average latency of eight minutes for INRIX freeway data. Also,24
a persistence test of three minutes is adopted in this study before triggering incident alarm. Taking25
these factors into consideration, the MT T D values obtained can be said to be satisfactory.26
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FIGURE 3 Average speed threshold variation for all segments

FIGURE 4 Hourly variation of traffic volume in the study region

CONCLUSIONS1
In the big data era, traffic parameters are stored continuously for all freeways thereby resulting in2
generation of massive datasets. This paper uses Apache Pig Latin, a high level map-reduce lan-3
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TABLE 2 Validation results of the proposed algorithms

Method DR (%)
FAR (%)

MTTD (mins)
[# of false alarms/day]

IQD 97.1 4.84 [4.1] 12.4
MAD 94.3 6.56 [4.0] 10.1
SND 82.9 0.62 [1.0] 13.2

guage to analyse the extensive historical dataset (approximately 500 GB in this case) and obtain1
useful information about the performance of each road segment separately. This useful information2
comes in the form of threshold speed values for each segment over the time of the day and different3
days of the week. These threshold values are used to develop AID algorithms which treat traffic4
incidents as outliers or anomalies in the data stream. Two other variations of the traditional SND5
based AID algorithms are developed and tested in this study to cater the masking effect of SND.6
To sidestep the need of an incident database for calibrating AID algorithms which is often very7
time consuming, this study uses threshold values generally adopted for univariate outlier analysis.8
However, based on availability of incident data, these algorithms can be trained to determine the9
best threshold values. Nonetheless, the high detection rate (94-97%) and considerably low FAR (410
false alarms per day) achieved by the proposed algorithms show the efficacy of the methods used11
and the future prospects of using more efficient anomaly detection techniques for traffic incident12
detection. In future, weather data can also be included as a variable impacting traffic conditions and13
multivariate outlier detection can be applied for improved incident detection. Sensitivity analyses14
of 15-min aggregation level and 3-min persistence test can also be done. Combining the benefits15
of big data analytics and advanced anomaly detection algorithms in future can help in develop-16
ing efficient AID algorithms with lesser calibration issues, low false alarm rates and hence wider17
applicability.18
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