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ABSTRACT 1 

Recent improvements in machine vision algorithms have led to CCTV cameras emerging as an 2 
important data source for determination of the state of traffic congestion. In this study we used 3 
two different deep learning techniques, you only look once (YOLO) and deep convolution neural 4 
network (DCNN), to detect traffic congestion from camera images. The support vector machine 5 
(SVM), a shallow algorithm, also was used as a comparison to determine the improvements 6 
obtained using deep learning algorithms. Occupancy data from nearby radar sensors were used to 7 
label congested images in the dataset and for training the models. YOLO and DCCN achieved 8 
91.5% and 90.2% accuracy, respectively, whereas SVM’s accuracy was 85.2%. Receiver 9 
operating characteristic curves were used to determine the sensitivity of the models with regard 10 
to different camera configurations, light conditions, etc. Although poor camera conditions at 11 
night affected the accuracy of the models, the area under the curve from the deep models were 12 
found to be greater than 0.9 for all conditions. This shows that the models can perform well in 13 
challenging conditions as well. 14 
 15 
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INTRODUCTION 1 

The US Department of Transportation (DOT) defined traffic congestion as "one of the single 2 
largest threats" to the economic prosperity of the nation (1). The cost of congestion in 2014 was 3 
calculated to be $160 billion for the top 471 urban areas in the United States. This included 6.9 4 
billion hours of wasted time and 3.1 billion gallons of wasted fuel (2). Undoubtedly, 5 
dissemination of real-time traffic information to road users can significantly improve the 6 
efficiency of traffic networks. Hence, estimating real-time traffic states and thereby detecting 7 
network anomalies such as congestion and incidents, have been of significant interest to 8 
researchers for the last few decades. 9 

Traditionally, traffic-state estimation is conducted using point-based sensors, including 10 
inductive loops, piezoelectric sensors, and magnetic loops (3). Recent advances in active infra-11 
red/laser radar sensors have led to these devices gradually replacing the traditional point-based 12 
sensors (4). Also, with the increasing usage of navigation-based GPS devices, probe-based data 13 
are emerging as a cost-effective way to collect network-wide traffic data (5). Video monitoring 14 
and surveillance systems also are used for calculating real-time traffic data (6). Recent advances 15 
in image processing techniques have improved vision-based detection accuracy. Deep learning 16 
methods, such as convolution neural networks (CNNs), have been able to achieve human-level 17 
accuracy in image classification tasks (7). The basic advantage of these methods is that they 18 
don’t require picking up hand-crafted features and hence can do away with the painstaking 19 
calibration tasks needed when using camera images for traffic-state estimation (8). 20 

Studies have also been performed fusing multiple sources of data for traffic state estimation 21 
(9–11). Van Lint and Hoogendoorn used extended generalized Treiber-Helbing filter for fusing 22 
probe-based and sensor based data (9). Choi and Chung used fuzzy regression and Bayesian 23 
pooling technique for estimating link travel times from probe data and sensor data (10). 24 
Bachmann et al. investigated several multi-sensor data fusion based techniques to compare their 25 
ability to estimate freeway traffic speed (11).  State DOTs also traditionally use sensor data and 26 
probe vehicle data for traffic state estimation. However, they have also installed a large number 27 
of roadside cameras on freeways and arterials for surveillance tasks such as incident detection. 28 
These cameras are used by traffic incident managers, who can zoom, tilt, and pan the cameras 29 
according to their need. Hence, the use of cameras for traffic-state estimation or congestion 30 
detection involves additional challenges due to frequent camera movement, which can alter the 31 
default calibrations. However, algorithms shouldn’t rely on the exact placement of cameras and 32 
should be able to accurately detect traffic conditions for different placement scenarios.  33 

In this study, we used camera images from different locations, orientations, and weather 34 
conditions to successfully detect traffic congestion. Three different models were used for 35 
congestion detection tasks. Two of these are deep neural networks: deep convolution neural 36 
networks (DCNNs) and you only look once (YOLO). Because these models require time-37 
consuming and costly GPU training, the support vector machine (SVM), a shallow learning 38 
model, was used as a comparison to determine the advantages of using deep models. 39 

The outline of this article is as follows: The present section provides a brief introduction 40 
and the importance of traffic congestion detection, the next section gives a review of previous 41 
work done on using cameras for traffic-state estimation, the third section gives an overview of 42 
the proposed models used for traffic congestion determination, the fourth section provides 43 
description of the data used in this study and the data preprocessing steps adopted for further 44 
analyses, the fifth section includes a discussion of the results obtained from the analyses, and the 45 
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final section provides the conclusion and recommendations for future work.  1 

LITERATURE REVIEW 2 

During the last few decades, significant research efforts have been devoted to using CCTV 3 
cameras to determine real-time traffic parameters such as volume, density, and speed (12, 13). 4 
These methods can be broadly divided into three categories: (a) detection-based methods, (b) 5 
motion-based methods, and (c) holistic approaches. 6 

Detection-based methods use individual video frames to identify and localize vehicles and 7 
thereby perform a counting task. Ozkurt and Camci used neural network methods to perform 8 
vehicle counting and classification tasks from video records (6). Kalman filter-based background 9 
estimation has also been used to estimate vehicle density (14). In addition, faster recurrent 10 
convolution neural networks (RCNNs) have been used for traffic density calculation (15); 11 
however, they were found to perform poorly for videos with low resolution and high occlusion. 12 
Recent achievements in deep learning methods in image recognition tasks have led to several 13 
such methods being used for traffic counting tasks. Adu-Gyamfi et al. used DCNNs for vehicle 14 
category classification (16). Oñoro-Rubio and López-Sastre used two variations of CNNs, 15 
namely counting CNN and hydra CNN, to conduct vehicle counting and predict traffic density 16 
(17). Recently, Zhang and Wu used both deep learning and optimization-based methods to 17 
perform vehicle counts from low frame-rate, high occlusion videos (12). They mapped the image 18 
to a vehicle density map using rank-constrained regression and full convolution networks. 19 

Several motion-based methods have been suggested in the literature to estimate traffic flow 20 
utilizing vehicle tracking information. Asmaa et al. used microscopic parameters extracted using 21 
motion detection in a video sequence (18). They also analyzed the global motion in the video 22 
scene to extract the macroscopic parameters. However, these methods tend to fail due to lack of 23 
motion information and low frame rates of videos; some vehicles appear only once in a video, 24 
and hence, it becomes difficult to estimate their trajectories. 25 

Holistic approaches avoid the segmentation of each object. Rather, an analysis is performed 26 
on the whole image to estimate the overall traffic state. Gonclaves et al. classified traffic videos 27 
into different congestion types using spatiotemporal Gabor filters (19). Lempitsky and Zisserman 28 
performed a linear transformation on each pixel feature to estimate the object density in an image 29 
(20); however, this approach was found to perform poorly in videos with a large perspective. 30 
Further, both these methods require manual annotation of each object in the images to perform 31 
the training of the counting task.  32 

Overall, significant studies have been conducted in the past using various deep and shallow 33 
learning models to implement vehicle counting tasks and thereby determine congestion states. In 34 
this study, we adopted the holistic approach to label an image as either congested or non-35 
congested. We also did away with counting each vehicle to determine the congestion state. 36 
Rather, we assigned labels to the images based on nearby benchmark sensors and then conducted 37 
the classification task. The next section provides detailed description of the methods used in our 38 
study. 39 

EXPERIMENTAL APPROACH 40 

Traffic congestion detection from camera images can be conducted in two broad ways. With the 41 
first approach, the input image can be fed into an object recognition model to determine the 42 
number of vehicles in the image and, when the number of vehicles exceeds a threshold, the 43 
image can be labeled as congested. With the second approach, the entire image can be classified 44 
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as either congested or non-congested. In our study, we used the second approach, as it is much 1 
simpler and also doesn’t require time-consuming manual annotation of individual vehicles. 2 

We used three different algorithms for the traffic congestion detection task: two based on 3 
deep neural networks, which require time-consuming GPU training, and one from the shallow 4 
learning algorithm class, which doesn’t require GPU training. The shallow algorithm was 5 
adopted primarily to determine the advantages, if any, for using GPU for this classification task. 6 
The three algorithms used in this study were: 7 

1. Traditional Deep Convolution Neural Network (DCNN) 8 
2. You Look Only Once (YOLO) 9 
3. Support Vector Machine (SVM) 10 

A detailed description of each of these algorithms is provided next. 11 

Deep convolutional neural networks (DCCNs) 12 

Collectively, DCNNs are a state-of-art technique for object detection and image classification. 13 
We used a traditional ConvNet architecture consisting of convolution and pooling layers. The 14 
convolution architecture used in this study is shown in Table 1. Because images from different 15 
cameras were used in this study, the input images were of different sizes, the majority being 16 
800×450 pixels. The images were then resized to 400×225 pixels to prevent memory allocation 17 
issues during the training of the model. Next, these images were fed into the model as two 18 
consecutive convolution layers 32×3×3 in size followed by a max pooling layer 2×2 in size. This 19 
was followed by two additional convolution layers 64×3×3 in size and then again max pooling 20 
with a 2×2 filter. Each max pooling layer was followed by dropout with a probability of 0.25 to 21 
prevent overfitting. Finally, two fully connected layers (dense) were used, the first one with 512 22 
neurons and the final one with two neurons corresponding to the binary classes (congested and 23 
non-congested). A batch size of 32 was used throughout the model and Leaky-ReLU was used as 24 
an activation function.  25 

TABLE 1 DCNN model architecture used 26 

Layer Kernel Stride Output Shape 

Input     [400, 225, 3] 
Convolution 3×3 1 [400, 225, 32] 
Convolution 3×3 1 [398, 223, 32] 
Max Pooling 2×2 2 [199, 111, 32] 
Dropout     [199, 111, 32] 
Convolution 3×3 1 [199, 111, 64] 
Convolution 3×3 1 [197, 109, 64] 
Max Pooling 2×2 2 [98, 54, 64] 
Dropout     [98, 54, 64] 
Dense     512 
Dropout     512 
Dense     2 

 27 
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DCNN models are computationally expensive and usually require millions of images to 1 
train the model to prevent overfitting. However, in our study, we had only 2400 images, of which 2 
1400 were used for training. So, to prevent overfitting, along with dropout, we also used data 3 
augmentation, similar to Ahmed  et al. (21). Here, we randomly flipped images horizontally with 4 
a probability 0.5 and also performed horizontal and vertical shifts in the range of 10% of the total 5 
height and width. It took 25 minutes to train the model on a NVIDIA Tesla K20m GPU with 4 6 
GB RAM memory. Keras (22), a deep learning library, was used to run the script in GPU. 7 

YOLO (You Only Look Once) 8 

We adopted the YOLO model (23) for general purpose congestion detection and 9 
localization from CCTV video feeds. Current object detection systems repurpose powerful CNN 10 
classifiers to perform detection. For example, to detect an object, these systems take a classifier 11 
for that object and evaluate it at various locations and scales in the test image. YOLO reframes 12 
object detection; instead of looking at a single image 1000 times to accomplish detection, it looks 13 
at an image only once (but in a clever way) to perform the full detection pipeline. A single 14 
convolutional network simultaneously predicts multiple bounding boxes and class probabilities 15 
for those boxes. This makes YOLO extremely fast and easy to generalize to difference scenes. 16 
YOLO is also a DCNN classifier, however in the rest of the analyses, we will denote it as YOLO 17 
and the traditional DCNN explained before as DCNN. 18 

YOLO uses a simple CNN architecture shown in Table 2. This neural network uses only 19 
standard layer types: convolution with a 3×3 kernel and max pooling with a 2×2 kernel. The very 20 
last convolutional layer has a 1×1 kernel, which serves to reduce the data to the shape 21 
13×13×125. This 13×13 shape is the size of the grid into which the image gets divided. There are 22 
35 channels for every grid cell. These 35 numbers represent the data for the bounding boxes and 23 
the class predictions, as each grid cell predicts five bounding boxes and a bounding box is 24 
described by seven data elements: 25 

• x, y, width, and height for the bounding box’s rectangle; 26 
• the confidence score; and 27 
• the probability distribution over the two classes (congested and non-congested) 28 

The key implementation steps for YOLO are as follows: 29 
1. Resize the input image to 416×416 pixels.  30 
2. Pass the image through a CNN in a single pass. The architecture of the CNN is described 31 

in the following section. 32 
3. The CNN outputs a 13×13×k tensor describing the bounding boxes for the grid cells. The 33 

value of k is related to the number of classes as follows: k = (number of classes + 5)*5.  34 
4. Compute the confidence scores for all bounding boxes and reject all boxes that fall below 35 

a predefined threshold.  36 
Because there are 13×13 = 169 grid cells and each cell predicts five bounding boxes, there are 37 

845 bounding boxes in total. Ideally, the majority of these boxes would have very low 38 
confidence scores. In this study, a confidence threshold of 45% was used for congestion 39 
detection.  40 

 41 
 42 
 43 
 44 
 45 
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TABLE 2 YOLO model architecture used  1 
Layer Kernel Stride Output Shape 
Input   [416, 416, 3] 
Convolution 3×3 1 [416, 416, 16] 
Max Pooling 2×2 2 [208, 208, 16] 
Convolution 3×3 1 [208, 208, 32] 
Max Pooling 2×2 2 [104, 104, 32] 
Convolution 3×3 1 [104, 104, 64] 
Max Pooling 2×2 2 [52, 52, 64] 
Convolution 3×3 1 [52, 52, 128] 
Max Pooling 2×2 2 [26, 26, 128] 
Convolution 3×3 1 [26, 26, 256] 
Max Pooling 2×2 2 [13, 13, 256] 
Convolution 3×3 1 [13, 13, 512] 
Max Pooling 2×2 1 [13, 13, 512] 
Convolution 3×3 1 [13, 13, 1024] 
Convolution 3×3 1 [13, 13, 1024] 
Convolution 1×1 1 [13, 13, 35] 

Support Vector Machine (SVM) 2 

A SVM is one of the most widely used shallow algorithms for image classification task. It solves 3 
a constrained quadratic optimization problem to classify data into different categories. The 4 
resulting optimal hyperplane is determined by maximizing the largest minimum distance to 5 
training examples to make it least sensitive to noise. We utilized the Oriented FAST and Rotated 6 
BRIEF (ORB) (24) feature detector to detect the key points in each image, whereby the FAST 7 
(features from accelerated segment test) algorithm was used to extract the key points and the 8 
Harris corner distance was used to determine the top N points. The algorithm was run on the 9 
training data set with 10-fold cross-validation to determine the optimal penalty parameter and 10 
kernel. This algorithm was run on Windows 7 with Intel Core i7-4790 CPU with 8GB of RAM. 11 

DATA DESCRIPTION 12 

Two different data sources were used in this study: camera images and radar-based Wavetronix 13 
sensors. Camera images were obtained from 121 cameras from the Iowa DOT CCTV camera 14 
database spread across the interstates and highways of Iowa. The database covered the major 15 
cities of Iowa: e.g., Des Moines, Sioux City, Cedar Rapids, Council Bluffs, Davenport, and Iowa 16 
City. Images were extracted from the cameras at 5-minute intervals from October 2016 to March 17 
2017, resulting in a total of 3.5 million images during the study period. The task of assigning a 18 
label to an image (congested or non-congested) consisted of four sub-tasks: 19 

1. Associating each camera with a nearby wavetronix sensor pair, 20 
2. Smoothening the wavetronix data, 21 
3. Extracting the details (camera name, timestamp) of each image, and 22 
4. Assigning the label of the image based on sensor data. 23 

Details of each of these tasks are discussed next. 24 
Each camera was first associated with the two nearest Wavetronix sensor pairs covering 25 
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both directions of the freeway on which camera was placed. If the sensor pair was located more 1 
than 0.5 miles away from the camera, then the particular camera was removed from analysis. 2 
Here, the assumption was made that if sensors are located more than 0.5 miles away from the 3 
camera, then the observation made from the camera might not match up with the sensor 4 
observations.  5 

The next step was to assign the traffic data from the sensor to each image. However, sensor 6 
data obtained from Wavetronix in 20-second intervals included too much noise; so, we used 7 
Wavelet smoothing to remove the noise. In this study, among the several families of wavelets 8 
that could be used, such as Haar, Daubechies, Biorthogonal, Symlets, Coiflets, Morlet, Mexican 9 
Hat, Meyer, etc., we used Daubechies extremal phase wavelets. Daubechies family wavelets are 10 
also known “dbN,” where N refers to the number of vanishing moments. The higher the value of 11 
N, the longer the wavelet filter and the smoother the wavelet. Based on our data, we used db2 12 
with level 6 to achieve a smooth curve-like filter that followed most of the variations of the 13 
original signal. A sample of the original and smoothed data is shown in Figure 1. 14 

 15 
Figure 1 Original and smoothed occupancy using Wavelet transform (db2 level 6) 16 

The next step was to extract the details of each image. The top of each image showed the 17 
details of the image (direction, camera name, and timestamp). Optical character recognition 18 
(OCR) was used to extract the details from each image, which were then matched with the 19 
corresponding sensor data based on the camera’s name and timestamp. 20 

 After obtaining the smoothed Wavetronix data, timestamp, and camera name for each 21 
image, we assigned the traffic data obtained from the sensor to the image. The traffic data 22 
comprised speed, volume, and occupancy observed at 20-second intervals. To assign the 23 
congested or non-congested label to the image, we used occupancy values, which are denoted by 24 
the percentage of the time the sensor is occupied by vehicles and have one-to-one mapping to 25 
traffic density or the number of vehicles in the unit distance.  Persaud and Hall suggested that  26 
occupancy of 20% or more should be considered congested, whereas occupancy below that 27 
should be considered non-congested (25). Thus, if no congestion (occupancy <20%) was 28 
observed in either direction of the wavetronix pair, then the image was classified as “non-29 
congested”; if congestion was visible in any particular direction or in both directions, then it was 30 
labeled as “congested.” We adopted this approach to do away with manual labeling of congested 31 
and non-congested images and to follow a uniform methodology for assigning labels to the 32 
images.  33 
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Finally, we obtained 1218 congested images and more than 3 million non-congested 1 
images. Due to class imbalance, we randomly chose 1200 non-congested images out of the 3 2 
million images. This dataset consisting of a total 2418 images was then subdivided into a training 3 
set and a test set. The training set consisted of 1400 images with equal proportions of congested 4 
and non-congested images. However, as will be discussed later, the YOLO approach of 5 
congestion detection requires manually annotating the region of congestion. For this purpose, 6 
100 congested images were extracted from the training set and manually annotated with the 7 
congested region. The test set consisted of 1018 images out of which 518 were congested and the 8 
rest were uncongested. Because sensor errors can occasionally cause misclassification of images, 9 
test set images were manually cross-checked and then the final labels were assigned. However, 10 
no manual cross-checking of labels was performed for the training set, as it was assumed that the 11 
algorithm itself should be able to determine the misclassifications, if any, in the training set.  12 

RESULTS 13 

The performance of each of the three algorithms were trained on 1400 images and tested on 1018 14 
test set images (518 congested and 500 non-congested). YOLO was trained and tested on 15 
NVIDIA GTX 1080 Ti 8 GB RAM GPU while for DCNN, NVIDIA Tesla K20m GPU with 4 16 
GB RAM was used. Intel Core i7-4790 with 8 GB RAM CPU was used for training and testing 17 
of SVM. The training times for YOLO, DCNN and SVM were 22 hours, 26 minutes, and 50.4 18 
seconds respectively. The testing times for the 3 algorithms were 0.01, 0.01, and 0.03 19 
seconds/frame respectively. The testing time does not include the time required for the model; 20 
rather, it includes only the time required to predict the class for each image. Because YOLO and 21 
DCNN are deep models, they had to be trained and tested using GPUs and which involved time-22 
consuming and costly training compared to its shallow counterpart, SVM. The testing times for 23 
DCNN and YOLO were lower, but they required GPU during testing time as well. 24 
 The performance of the algorithms was evaluated using the standard performance metrics 25 
of precision, recall, and accuracy (Equations 1, 2 and 3, respectively). When a congested image 26 
was correctly labeled (i.e., the predicted label was also “congested”), it was classified as true 27 
positive (TP). Similarly, if a non-congested image was correctly labeled as “non-congested,” 28 
then it was classified as true negative (TN). However, if the actual label was “congested” and the 29 
predicted label was “non-congested,” it was classified as false negative (FN). And finally, if the 30 
actual label was “non-congested” and the predicted label was “congested,” it was classified as 31 
false positive (FP). 32 

                                                              𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
                                                                  (1) 33 

                                                              𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
                                                                        (2) 34 

                                             𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
                                                           (3) 35 

Some examples of true classifications and misclassifications obtained from each 36 
algorithm (YOLO, DCNN, and SVM) are shown in Figure 2. Examples of true positives, for 37 
which each algorithm correctly labeled congested images, are shown in Figures 2a, 2b, and 2c 38 
(YOLO also gives the bounding box for the congested region). On the other hand, examples of 39 
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false positives, for which the algorithms misclassified non-congested images as congested, are 1 
shown in Figures 2d, 2e, and 2f. It can be seen that YOLO misclassified an image as a congested 2 
region because of a group of vehicles located far away from the camera during nighttime (Figure 3 
2d) and vehicles on a bridge led to misclassification by DCNN (Figure 2e). SVM, on the other 4 
hand, had misclassifications in adverse weather conditions (Figure 2f) because snow particles 5 
were detected as corners, which caused the image to be labeled as congested. Examples of false 6 
negatives, for which the algorithms failed to detect congested images correctly, are shown in 7 
Figures 2g, 2h and 2i. Congestion quite distant from the camera led to misclassification by 8 
YOLO (Figure 2g), whereas DCNN failed to detect congestion in a single lane when the other 9 
lane was closed and hence empty (Figure 2h). Glare issues resulted in SVM misclassifications 10 
(Figure 2i). Finally, examples of true negatives, for which the algorithms correctly labeled non-11 
congested images, are shown in Figures 2j, 2k, and 2l. 12 

 YOLO DCNN SVM 
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FP
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Figure 2 Congestion detection classifcation examples: (a-c) true positives, (d-f) false 13 
positives, (g-h) false negatives, (j-l): true negatives 14 

The precision, recall, and accuracy values obtained from each algorithm are shown in 15 
Table 3. YOLO achieved the highest precision, recall, and accuracy followed closely by DCNN. 16 
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Because YOLO achieved better accuracy compared to DCNN, we didn’t performed region-based 1 
CNN separately to determine the congested region of the results obtained from DCNN. YOLO, 2 
on the other hand, being a region-based classifier gives the congested region of the image by 3 
default (see Figures 2a and 2d). The accuracy obtained by SVM was comparatively lower 4 
(85.2%) than expected given the lower computation costs involved in such a shallow algorithm. 5 
In this context, it should be mentioned that a separate analysis, reported in a separate paper (24), 6 
using an ensemble of shallow learning algorithms (SVM with ORB, Shi-Tomasi, and Structured 7 
Edge Toolbox feature detector) gave an accuracy of 86.7% with the same dataset. Here, we used 8 
only SVM with ORB for comparison of deep learning models with a standard shallow model.  9 

Table 3 Precision, recall and accuracy values obtained from the three algorithms 10 
Method Precision (%) Recall (%) Accuracy (%) 

YOLO 88.6 94.3 91.4 

DCNN 86.9 93.9 90.2 

SVM 82.8 88.5 85.7 

Sensitivity Analysis 11 

Sensitivity analysis was also performed to determine which factors might affect the performance 12 
of the congestion detection system developed here. We evaluated two factors that could 13 
influence the classification task: first, the time of day the image was captured (daytime versus 14 
nighttime) and, second, camera resolution (blurring, rain, snow, and glare). The test database was 15 
then divided into four subgroups according to the combination of the two factors, as follows:  16 
 17 

1.  D-G: daytime, good resolution (436 images); 18 
2. N-G: nighttime, good resolution (147 images); 19 
3. D-P: daytime, poor resolution (190 images); and 20 
4. N-P: nighttime, poor resolution (245 images). 21 

Receiver operating characteristics (ROC) curves were then used to compare the 22 
performance of each algorithm for each subgroup based on the true positive and false positive 23 
rates (TPR and FPR, respectively), as defined in Equations (4) and (5), respectively:  24 

                                                             𝑇𝑇𝑃𝑃𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
                                                                       (4) 25 

                                                            𝐹𝐹𝑃𝑃𝑅𝑅 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝐹𝐹
                                                                        (5) 26 

For an efficient image classification model, the TPR should be higher than the 27 
corresponding FPR. On the other hand, for a poor-vision system model, when the sensitivity 28 
(TPR) increases, it loses the ability to discriminate between congested and non-congested 29 
images, which makes the TPR directly proportional to the FPR. The ROC curves for each 30 
subgroup obtained from the three models—YOLO, DCNN, and SVM—are shown in Figures 3a, 31 
3b, and 3c, respectively. The overall ROC curve for the three algorithms is shown in Figure 3d. 32 
Also, the area under each curve (AUC) is provided for each case. For all three algorithms, TPRs 33 
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were higher than the corresponding FPRs irrespective of the prevailing conditions (daytime or 1 
nighttime, poor or good resolution). All of the algorithms performed well during the daytime, 2 
irrespective of the camera resolution. However, AUCs were found to be lowest for poor 3 
resolution images at night (N-P). Moreover, irrespective of the conditions, the AUCs from all 4 
algorithms for each subgroup were found to be mostly higher than 0.90, except for N-P 5 
conditions from SVM. This shows that the system works well even under challenging conditions. 6 

  
(a) (b) 

  
(c) (d) 

 

 

Figure 3 ROC curves under different prevalent conditions obtained from a) YOLO b) 7 
DCNN c) SVM and (d) all conditions combined for each algorithm 8 
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In addition, ROC curves can be used by traffic management centers (TMCs) to choose an 1 
optimal threshold between TPR and FPR. Previous studies have shown that too many false calls 2 
is a major reason for limited integration of automatic incident detection algorithms in the TMC. 3 
Hence, it is important for TMC personnel to know the accuracy that be achieved given a 4 
particular FPR. For example, if a TMC wants to restrict the FPR to lower than 0.1, then the TPR 5 
obtained by YOLO, DCNN, and SVM will be 0.92, 0.96, and 0.82, respectively, during good 6 
daytime (D-G) conditions. Obviously, the accuracy would be lower with poor camera conditions 7 
at night. Hence, TMC personnel can use the ROC curves to set the optimal threshold of TPR and 8 
FPR based on their specific needs. 9 

Real-time Implementation 10 

The congestion detection algorithms can also be implemented online easily. With a test time of 11 
0.01 seconds per image, the algorithms can be adopted to detect traffic congestion of 12 
approximately 1000 cameras in every 10 seconds interval using a single GPU. Figure 4 shows an 13 
example of congestion detection by DCNN algorithm on images extracted from a camera on a 14 
single day (27th October, 2017) at every 10 seconds interval. The congestion alarm occurrences 15 
from camera is shown in the background of Figure 4 along with the occupancy data obtained 16 
from nearest radar sensors (both directions). However, due to sensor issues, sensor data were 17 
missing from 8:51 AM to 12:57 PM. So, a 2-vehicle crash reported at around 10:30 AM was 18 
missed by sensor, but was detected successfully by the camera. Thus, this example also shows 19 
that using multiple data sources (cameras, sensors, etc.) can increase the reliability in traffic state 20 
estimation.  Callouts (i) and (ii) are also provided in Figure 4 to show samples of camera images 21 
when congestion alarms were triggered. To eliminate false alarms, alarms are triggered only 22 
when congestion is detected on 3 consecutive 10-seconds interval frames (persistency test). Also, 23 
alarms triggered within 5 minutes interval are combined together to form a single continuous 24 
alarm. These “signal smoothing” techniques help in decreasing false alarm rates (FAR) and 25 
increasing detection rates (DR). Future studies can be done implementing better smoothing 26 
techniques like Fourier Transforms or Wavelet smoothing and determining the DR and FAR on a 27 
network of cameras. 28 

CONCLUSIONS 29 

Recent advancements in machine-vision algorithms and high performance computing have 30 
improved image classification accuracy to a great extent. In this study, two such deep learning 31 
techniques, the traditional DCNN and YOLO models, were used to detect traffic congestion from 32 
camera images. SVM also was used for comparison and to determine what improvements were 33 
obtained while using costly GPU techniques. To eliminate the time-consuming task of manual 34 
labeling and to maintain uniformity in congestion labeling, we used nearby Wavetronix sensors 35 
to correctly identify congested images. For testing purposes, we also labeled each image 36 
manually to remove misclassifications due to sensor errors. 37 

The YOLO model achieved the highest accuracy of 91.2% followed by DCNN with an 38 
accuracy of 90.2%; 85% of images were correctly classified by SVM. Congestion regions 39 
located far away from the camera, single-lane blockages, and glare issues were found to affect 40 
the accuracy of the models. To determine the sensitivity of the models to different camera 41 
configurations and light conditions, ROC curves were used. All the algorithms were found to 42 
perform well in daytime conditions, but night conditions were found to affect the accuracy of the 43 
vision system. However, for all conditions, the AUCs were found to be greater than 0.9 for the 44 
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deep models. This shows that the models perform well in challenging conditions as well. 1 
 2 

 
(a) 

  
(b) (c) 

Figure 4 (a) Sensor occupancy data and congestion alarm from a camera on a particular 
date; (b-c) Camera images of Callouts (i-ii) shown in Part a  
  3 
 An example of the real-time implementation of congestion detection using DCNN 4 
algorithm is also performed using a continuous set of images extracted from a camera. Simple 5 
persistence test methods were applied to reduce the false alarms and smoothen the output signal. 6 
Future studies can look into different smoothing techniques (Fourier Transform, Wavelets) to 7 
denoise the output obtained from the algorithm and determine the overall detection rate and false 8 
alarm rates on a network of cameras. Future studies can also be done using different model 9 
architectural designs to improve detection accuracies. Such models can also be used for 10 
determining different levels of congestion (high, medium, or low) and also more accurate traffic 11 
state determination (speed, volume and occupancy). Congestion status obtained from the 12 
cameras can also be stored as historical data and used to determine traffic anomalies such as 13 
incidents. 14 
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