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Abstract

Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In
this paper, we propose a data-driven AID framework that can leverage large-scale historical traffic data along with
the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared
with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two
basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic
information from individual sensors. This step can be parallelized using MapReduce framework thereby making it
feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve
incident detection performance significantly compared to traditional threshold determination. Second, we leverage
the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to
obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total
variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral
filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising.

Keywords: freeway incident detection, threshold denoising, total variation, bilateral filter, mapreduce

1. Introduction

Traffic congestion in freeways poses a major threat to the economic prosperity of the nation (Owens et al., 2010).
Freeway congestion is usually classified into two categories: recurrent congestion and non-recurrent congestion
(Ozbay and Kachroo, 1999; Dowling et al., 2004; Anbaroglu et al., 2014). Recurrent congestion typically exhibits a
daily pattern, observed in morning or evening peaks. On the other hand, non-recurrent congestion is mainly caused
by unexpected events like traffic incidents or stalled vehicles (Anbaroglu et al., 2014). Such events are a major source
of travel time variability (Noland and Polak, 2002) and often cause frustration to the commuters (FHWA). Hence,
automatic incident detection (AID) has been identified to be a crucial technology for reduction of non-recurrent traffic
congestion (Sussman, 2005). Early incident detection has shown to save 143.3 million man-hours and $3.06 million in
2007 (Schrank and Lomax, 2007). Consequently, significant research has been done on the development of accurate
AID algorithms.

With the wide-spread usage of mobile phones and video surveillance systems, incident detection time has been
reported to reduce significantly in recent times, particularly in urban conditions. In general, incidents are found to
be usually reported within 2 minutes and hardly exceeds 5 minutes (Yang et al., 2018). However, this reporting
mostly rely on either receiving calls from people directly involved in the incidents or manually inspecting hundreds
of cameras installed in the freeways, which hinders the scalability and reliability of the detection system. On the other
hand, with the wide-spread usage of mobile phones used in navigation systems, probe vehicle data has emerged out
to be a cost-effective way of providing state-wide real-time traffic speed data. Additionally, the state Department of
Transportation usually installs fixed sensors (radar-based, loop-based, etc.) in major arterials and freeways for traffic
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monitoring purpose. These data sources when used effectively, can turn out to be an additional, complementary source
for detecting traffic incidents reliably on a large scale. Thus, there lies a significant need for research to develop such
a reliable and scalable AID algorithm.

Various data-driven algorithms and statistical models have been used to develop AID algorithms. A popular
approach for detecting traffic incidents is to learn the traffic patterns using accumulated traffic data observed in the
past and detect incidents when traffic data observed in real-time behaves significantly different from the learned
patterns (Dudek et al., 1974; Kamran and Haas, 2007; Zhang et al., 2016). With the recent advancement in traffic
data collection and data storage technologies, fixed sensors installed on roads or probe vehicles can provide useful
information on the real-time traffic state over vast networks. These data sources, when compared and matched with
corresponding historical datasets, can serve as useful indicators of traffic incidents.

However, two major challenges arise in such AID algorithm development. First, it is very difficult to obtain
a consistent statistical model of the dynamics of traffic patterns. Recurring congestion events can pair with the non-
recurring events at the same time and location, thereby making it difficult to separate the true positives (incidents) from
false positives (caused by recurring congestion). Second, with the recent advancements in data storage technologies,
the scale of traffic data stored from a traffic network makes it difficult to process it in real-time and detect traffic
incidents. So, a considerable amount of computation is involved in parsing the data which makes it difficult for
conventional statistical methods to handle such massive data sources and enable a real-time AID algorithm.

The primary objective of this paper is to propose and implement a massively parallelizable data-driven framework
for AID in freeways. Our framework leverages the traffic information obtained from each sensor, together with
the inherent topology of the traffic network to obtain robust traffic pattern estimates. Such traffic patterns can be
used to detect traffic incidents by comparing the real-time traffic data with the corresponding pattern and detecting
the anomalies. Further, such a framework can be easily extended over large highway networks due to its inherent
parallelizable framework.

The primary conceptual building block of our approach is to sub-divide the road network into multiple smaller
segments. Each segment produces a time-series of the traffic state (average speed). These time-series are extensively
large-scale, with thousands of data points being recorded daily per segment. In order to enable real-time computa-
tion, we first perform dimensionality reduction with novel robust summary statistics of each time-series across non-
overlapping time windows. This summary statistics computation can be massively parallelized using MapReduce
(Dean and Ghemawat, 2008), thereby making it feasible to apply the framework over large networks. We develop
on our previous work Chakraborty et al. (2017b) to show how these robust summary statistics are less susceptible
to optimum threshold determination compared to traditional standard normal deviates based statistics. However, this
summary statistics computation do not take into account the spatio-temporal correlations of the time windows and
are therefore noisy. To resolve this, we leverage the knowledge of the topology of the road-network and construct
a “heatmap” of the summary statistics. We then perform multivariate denoising of the “heatmap” assuming that the
summary statistics of the topologically and temporally adjacent regions are likely to be similar. Recently, Chakraborty
et al. (2017a) applied trend filtering based methods for denoising the threshold heatmaps to be used for incident detec-
tion. However, this study didn’t cover what benefits can be achieved in AID performance using the denoised heatmaps.
In this study, we used bilateral filtering for threshold denoising and compared the performance with total variation,
used by Chakraborty et al. (2017a), to show the improvements obtained in incident detection performance with such
spatio-temporally denoised robust summary statistics.

The paper is organized as follows. Section 2 provides a brief description of the relevant literature on traffic incident
detection in freeways. Section 3 describes the methodology adopted in this study followed by the data description in
Section 4. Section 5 provides the details of the results obtained using the proposed methodology. Finally, Section 6
provides a summary of our results and points to directions of future study.

2. Literature Review

Freeway traffic incidents are usually classified as anomalies or outliers in the traffic stream. AID algorithms aim
to detect such anomalies using real-time traffic data along with historical data (whenever available). AID algorithms
can be primarily classified into two categories based on the methodology adopted:

1. Real-time traffic data is compared with the traffic data observed in the immediate past (i.e., over the previous T
intervals) to detect abnormalities which can be classified as incidents.
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2. Historical traffic data is used to generate “normal” traffic patterns, and significant deviation from the normal
patterns are classified as incidents.

Several existing algorithms compare real-time traffic conditions with immediate past conditions to detect traffic
incidents. Parkany and Bernstein (1995) detected traffic incidents based on the principle that when traffic conditions
switch from incident-free to incident conditions, frequent lane switch maneuvers and temporal and spatial discrepan-
cies in headway and travel conditions can be observed. Hellinga and Knapp (2000) proposed the Waterloo algorithm
where it is assumed that travel-time is log-normally distributed and normal travel pattern is estimated from the traffic
data of past T intervals. Li and McDonald (2005) proposed the bivariate analysis model (BEAM) where the travel
time difference between adjacent travel time intervals are used for detecting incidents. On the other hand, Zhu et al.
(2009) used both spatially and temporally adjacent time intervals as features for incident detection purposes. Li et al.
(2013) used weighted average and standard deviation of past T intervals of traffic parameter values to detect traffic
incidents from the data stream. False alarms due to fluctuations in traffic variables were handled by replacing the
mean and standard deviation of current time intervals with those of the previous time intervals when the coefficient
of variation of traffic variable was found to be less than a predetermined threshold. Recently, Asakura et al. (2017)
used shock wave theory to probe-vehicle trajectories to detect traffic incidents. Although all the above algorithms
have been used extensively for incident detection, they do not utilize the wealth of information available from past
historical data. Rather, they rely only on the real-time and immediate past traffic data to detect the abnormalities in
the data stream.

Using only real-time and immediate past traffic data for incident detection helps in avoiding the issues in storing
and processing large scale traffic data. However, with the recent advancements in data storage and data processing
technologies (Zhang et al., 2017), it makes more sense to utilize information from historical traffic data to develop
efficient AID algorithms. Along. For example, Sethi et al. (1995) used linear discriminant analysis to learn the
linear relationship of predictor variables from historical traffic data that can differentiate between the incident and
non-incident conditions. Balke et al. (1996) used standard normal deviates (SND) to generate confidence intervals for
normal traffic conditions. Significant deviations from normal conditions can be labeled as traffic incidents. Historic
average travel times and their normal deviates were determined by the time of day and day of the week for each
road segment to denote incident-free conditions. Since mean and standard normal deviates are known to be prone
to outliers, Balke et al. (1996) used an incident dataset for removing the outliers from historic data before summary
statistics computation. So, this method also requires traffic incident dataset with accurate start and end time of the
incidents (which are often hard to get) for incident detection. Snelder et al. (2013) used median instead of mean in
order to achieve robust summary statistics computation and used it as a reference case to find out delays caused by
incidents.

SND and such similar methods do not take into consideration the spatio-temporal relationship of the road network
to generate normal traffic conditions. However, Chung (2011) applied SND over spatio-temporally connected cells
to determine incident-induced delay. Chung and Recker (2012) further extended the method using an optimization
method to determine optimal hyper-parameter c in SND method (µ − c × σ, where µ denotes the mean and σ denotes
the standard deviation) to estimate the spatio-temporal extent of incidents. These studies, however, do not consider the
spatio-temporal correlation of the thresholds. They rather use topological and temporal information to determine the
impact region of traffic incidents based on the thresholds generated from univariate time-series. Similarly, Anbaroglu
et al. (2014) used spatio-temporal clustering for detecting non-recurrent traffic congestion when link journey time of
spatio-temporally connected cells exceed pre-determined threshold computed from historical data. Chen et al. (2016)
also used spatio-temporal clustering to identify recurrent and non-recurrent congestion, their spatio-temporal extent
and quantify the delay caused by such incidents. Similarly, Zhang et al. (2016) used dictionary-based compression
theory for identifying the spatio-temporal traffic patterns at the detector, intersection, and sub-region level which can
be used for anomaly identification.

With the rapid advancement in deep learning techniques and their success in supervised and unsupervised clas-
sification and anomaly detection problems, significant research has also been performed using such state-of-the-art
techniques for traffic incident detection too. Convolution neural networks (CNN), deep belief networks (DBN), au-
toencoders, long short-term memory networks (LSTM) and their variations have been used for detecting incidents
from spatio-temporal traffic data (Yuan et al., 2018; Hashemi and Abdelghany, 2018; Chen et al., 2016; Zhu et al.,
2018), social media data (Chen et al., 2018; Zhang et al., 2018; Amin-Naseri et al., 2018), and traffic cameras (Singh
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and Mohan, 2018; Chakraborty et al., 2018b,a). Zhu et al. (2018) represented spatio-temporally correlated traffic data
as images and used CNN for detecting incidents in traffic networks. A similar analysis was also performed by Yuan
et al. (2018) to predict incidents using convolutional long short-term memory networks (Hetero ConvLSTM) model.

Thus, significant research has been conducted to develop accurate AID algorithms using the rich information
obtained from historical traffic data. Spatio-temporal analysis has also been performed to find out the extent of traffic
incidents and their impact regions. This study complements the existing research by extending the AID framework
in two different ways. The first part involves the computation of robust summary statistics using parallel computation
methods enabling application of the AID algorithm over large-scale traffic network. The second part involves the
generation of accurate summary statistics by multivariate denoising which utilizes the spatio-temporal correlation of
the parameters obtained from the first part. Our main objective in this study is to develop a data-driven approach
which can utilize the large-scale traffic data to learn normal traffic patterns using parallel computation methods. The
reduced dataset can be further refined using multivariate denoising techniques to develop more accurate and robust
traffic patterns. This enables to implement the AID algorithm over large traffic networks. Overall, we show that our
proposed AID framework can achieve improved overall detection performance.

3. Methodology

Lane-blocking traffic incidents or incidents impacting the traffic stream often result in a significant drop in vehi-
cle speeds and/or increase in the traffic densities. Hence AID algorithms often model traffic incidents as outliers or
anomalies in the traffic data stream. The basic objective of the AID algorithm is to detect these anomalies by compar-
ing the real-time traffic data with the immediate past data or with the historical past data. In this study, we extend the
popular SND algorithm (Dudek et al., 1974; Balke et al., 1996) of incident detection which uses the historical traffic
data to learn traffic pattern. Then the traffic pattern is compared with real-time traffic data to detect the anomalies in
the streaming real-time data. Our incident detection framework consists of two steps:

1. Univariate speed threshold determination: This involves the determination of robust summary statistics (thresh-
olds) of each univariate time series resulting from each road-segment.

2. Multivariate spatio-temporal threshold denoising: The thresholds determined in the previous step are now
denoised using the spatio-temporal correlations of the adjacent thresholds.

Next, we set up our model, followed by a detailed description of each of the above two steps.

3.1. Setup
We first describe the mathematical abstraction of our data corpus. Let the weighted graph of the traffic network

is denoted by G = (S , E,W). Here, S = {si}
n
i=1 denotes the nodes of the graph, E = {ei}

m
i=1 denotes the (undirected)

edges, and W = {wi}
m
i=1 denotes the weights of the graph. In our framework, the nodes of the graphs correspond to the

consecutive road-segments into which the freeway under consideration is partitioned, and an average vehicle speed
(x) is reported each minute for each segment. The nodes corresponding to consecutive segments along the freeway
are connected via appropriately weighted edges. In this study, the freeway segments considered are of approximately
equal lengths, varying from 0.4 miles to 0.6 miles. Hence, we assume here that the weights of each node are equal
to 1 (i.e., unweighted edge segments). However, conceptually these can be extended further to encode other spatial
information. For example, unequal length freeway segments can be represented with weights proportional to its
length. These weights can be used in the multivariate spatio-temporal threshold denoising, as explained in Section
3.3.

The topology of the road network (i.e., the order of the road segments) describes the connectivity of our graph
system. We measure a (noisy) time series for each node s on a given day (say d) of length N:

xd
s =

(
xt1,d

s , xt2,d
s , ..., xtN ,d

s

)
(1)

Here, ti denotes the ith time instant, and d denotes the day of the week. The observed time series are synchronized
across different nodes, i.e., the time stamps t1, t2, ..., tN are same for all days across all segments.

Overall, we model the time series as a third-order tensor x ∈ Rn×N×D
+ . Here, D denotes different days, n refers to

the total number of nodes in the graph, and N denotes the length of the time series. For example, if the average speed
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of each segment is reported in 1-minute intervals (as in this study), then the length of the time series N will be equal
to 24 × 60 = 1440. Our objective here is to identify anomalous local patterns in this tensor.

However, a major challenge that we face is the scale of the traffic data. The number of road segments and the
sampling rate of the segments are very high, thereby producing millions of traffic records daily. For example, the
entire road network of Iowa, divided into approximately 54,000 segments, produce 4 gigabytes of daily traffic speed
data, which aggregates to approximately 1.5 terabytes of annual traffic data.

To alleviate this issue, we first pre-process along the second dimension of the tensor. We perform robust summary
statistics computation of each univariate time series across non-overlapping windows to determine (scalar) thresholds
of each window in the time series, which will serve as key parameters in our AID framework. The details of this step
are discussed next.

3.2. Univariate Threshold Computation
Our basic methodology for univariate threshold computation is based on the popular SND algorithm (Dudek et al.,

1974; Balke et al., 1996) for incident detection. The algorithm involves modeling the univariate statistics of each non-
overlapping windows of the time series data as a Laplace distribution with location parameter µ and scale parameter
ζ. More specifically, each univariate time series is divided into 15-minute non-overlapping windows (p), similar to
study by Dudek et al. (1974), and the threshold speed (τ) for each window is determined from the location and scale
parameters. The threshold (τp,d

s ) speed is defined as:

τ
p,d
s = µ

p,d
s − c × ζ p,d

s (2)

where, the optimum constant c is to be determined from the validation set. This auxiliary reduced tensor, speed
threshold (τp,d

s ), can be compared with real-time speed data Xti,d
s to detect anomalies or traffic incidents.

The SND algorithm uses the mean speed value (x̄) as the location parameter (µ) and the corresponding standard
deviation (σ) as the scale parameter (ζ) to model the normal traffic pattern. Normal traffic condition varies depending
on the time of day and day of the week. Hence the location and scale parameters are determined for each day of the
week, and 15-minute periods of the day for each segment. Threshold speed values over 15-minute intervals of each
day of the week are determined using the previous 8 weeks of traffic data for the same segment for the given day of
the week and period of the day, similar to the study of Balke et al. (1996). The mean speed values (x̄p,d

s ), standard
deviation σp,d

s , and threshold speed τp,d
s,snd for SND algorithm can be determined as follows:

x̄p,d
s =

∑
∀k xp,d

k,s∑
∀k k

(3)

σ
p,d
s =

1∑
∀k k

∑
∀k∈(d,p,s)

(
xp,d

k,s − x̄p,d
s

)2
(4)

τ
p,d
s,snd = x̄p,d

s − csnd × σ
p,d
s (5)

Although the SND algorithm is easy to calibrate and inherits good transferability (Li et al., 2013), a major drawback
of the algorithm is that it is prone to outliers or anomalies (Balke et al., 1996). Both location and scale parameters
(mean and standard deviation) are known to be highly susceptible to outliers (Pearson, 2005). This causes a severe
challenge for traffic datasets that contain anomalies (in the form of incidents), and can lead to misrepresentation of the
underlying normal traffic patterns due to these anomalies. One possible way to tackle this issue is to manually remove
all time intervals that are known incidents (e.g. by referring to incident reports), before calculating the aforementioned
threshold parameters. This requires complete knowledge of the traffic incident data during both training, testing, and
implementation; however, it is often difficult to get accurate reports of incidents (Ren et al., 2012). In particular, it
is hard to obtain accurate estimates for start time, duration, and impacted regions due to traffic incidents (Yue et al.,
2016). To alleviate this issue, we propose to use alternate robust summary statistics (learned from the time series
tensor itself) for the location and scale parameters so that the affect of the presence of anomalies can be minimized.

Outlier detection is an important task in statistical analysis and significant research has been performed for de-
velopment of robust models to detect outliers from noisy data streams (Pearson, 2005; Aggarwal, 2007). Interested
readers can refer to Gupta et al. (2014) for a detailed review of current outlier detection methods. In this study, we

5



propose to use two such modifications of the SND summary statistics to calculate robust location and scale parame-
ters. Specifically, we replace the standard deviation values by maximum absolute deviation (MAD) (Hampel, 1974)
and inter-quartile deviation (IQD) for the scale parameter (ζ). For both these methods, we use median speed values
instead of mean values as location parameter (µ). Studies have shown that median, IQD, and MAD provide more
robust summary statistics compared to mean and standard deviation for data containing outliers (Pearson, 2005; Leys
et al., 2013). Thus, the two modified univariate threshold computation techniques can now be expressed as:

1. MAD algorithm: µ = Median (M), ζ = Maximum Absolute Deviation (MAD),

τ
p,d
s,mad = Mp,d

s − cmad × MADp,d
s (6)

2. IQD algorithm: µ = Median (M), ζ = Inter-Quartile Distance (IQD),

τ
p,d
s,iqd = Mp,d

s − ciqd × IQDp,d
s (7)

The median (M), maximum absolute deviation (MAD), and inter-quartile deviation (IQD) can be calculated as
follows:

Mp,d
s = median∀k

(
xp,d

k,s

)
(8)

MADp,d
s = median∀k

∣∣∣∣xp,d
k,s − Mp,d

s

∣∣∣∣ (9)

IQDp,d
s =

{
xp,d

k,s : Pr (X ≤ x;∀k) = 0.75
}
−

{
xp,d

k,s : Pr (X ≤ x;∀k) = 0.25
}

(10)

Although MAD and IQD are known to be robust to outliers, one of the major drawbacks of these statistics is they
are susceptible to “swamping” problems where non-outliers are classified as outliers resulting in a significant number
of false alarms. This implies that if more than 50% of the data values (xk) are very similar (i.e., close to swamping
breakdown point), then IQD and MAD are both equal to zero. So, any value different from median will be reported as
an outlier. This has important consequences for incident detection because traffic data is usually concentrated along a
particular value. For example, a freeway segment with speed limit of 70 mph will mostly report speed values around
70 mph. So, when more than 50% of speed values are equal to 70 mph, the ζ parameter (i.e., MAD or IQD) will be
equal to zero and hence a speed value of even 69 mph will be reported as an outlier. This will result in a significant
increase in the number of false alarms.

However, in traffic incident detection problems, we can take advantage of the fact that the capacity-reducing traffic
incidents will significantly impact the traffic conditions and result in congested traffic conditions. To recall, AID
algorithms relying on macroscopic traffic data solely (instead of cameras, probe vehicle trajectories or similar data
sources) can only detect incidents which impact traffic flow and result in significant reduction in the capacity. So,
the incident alarm can be triggered only when congested conditions exist and the observed speed is lower than the
expected threshold (given by Equation 2). Federal Highway Administration guidelines state that congested conditions
occur in freeways when average speed in a road-segment is less than 45 mph (Systematics, 2005). So, the modified
threshold speed value can now be written as:

τ
p,d
s = Min

[
45, µp,d

s − c × ζ p,d
s

]
(11)

One of the major advantage of these summary statistics (mean, median, MAD, and IQD) is that their computa-
tion can be easily parallelized over multiple systems thereby enabling the AID framework to handle massively large
datasets over wide traffic network. In this study, we used Apache Pig (2018), a Hadoop MapReduce framework for
computation of the summary statistics values from raw traffic speed data. The optimal constant parameters, csnd, cmad,
and ciqd) in Equations 5, 6, and 7 respectively are determined using the incident validation data set. Also, similar
to past studies (Ren et al., 2012; Li et al., 2013), we perform persistence test before triggering incident alarm. This
means an incident alarm is triggered when observed speed values are lower than the threshold speed value (Equation
11) for three consecutive intervals. This is done to reduce false alarms due to spurious noisy low speed values.
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3.3. Multivariate Spatio-Temporal Threshold Denoising

Univariate threshold computation, given by Equation 11, does not take into consideration the topology of the
traffic network or temporal correlations between the time windows. Hence, the thresholds computed can be highly
noisy and variable across contiguous roadway segments. To compensate for this, we propose to improve the quality
of the estimated thresholds using the spatio-temporal information. We leverage both the underlying topology of the
road network and the temporal coherence of the time windows and perform denoising to obtain improved estimates
of the speed threshold values depicting the normal traffic pattern.

First, we obtain a “heatmap” of the threshold speeds calculated using Equation 11. Figure 1 shows a sample
speed threshold heatmap. The road segments are arranged according to their corresponding mileage, along with
temporally consecutive time windows to form the heatmap. We argue that the spatially and temporally coherent time
windows are likely to exhibit similar thresholds. So, we formulate our objective as to obtain a coherent, smoothed
threshold heatmap by performing denoising of the raw heatmap. In this study, we used two specific procedures of
image denoising techniques — bilateral filter (Tomasi and Manduchi, 1998) and total variation Rudin et al. (1992)
— to obtain the denoised threshold map which can be used for improved incident detection performance. We chose
these denoising techniques since they are known to preserve the edges during denoising. This is important given the
fact the sharp edges in threshold heatmaps often indicate the regions of recurrent congestion (as shown in Figure 1)
and preserving the edges will help to differentiate the recurrent congestion from non-recurrent congestion events such
as traffic incidents. As explained in Section 3.1, we assume the weights of each node equal to 1 since the freeway
segments are approximately equal length. For unequal length segments, weighted bilateral filter and weighted total
variation can be used. Interested readers can refer to (Anantrasirichai et al., 2014; Liu et al., 2016) for further details.
Next, we discuss the details of bilateral filter and total variation in the context of this study.

Figure 1: Sample speed threshold heatmap (mph)

3.3.1. Bilateral Filter based Threshold Denoising
Bilateral filtering (Tomasi and Manduchi, 1998) is a popular image denoising technique which preserves edges

while smoothing. In the most basic formulation, each pixel in an image is replaced by the average of its neighbors,
keeping into account the geometric closeness (spatial and temporal correlations) along with the photometric similarity
(speed threshold values). As stated in Section 3.1, the multivariate time series can be represented as a third-order
tensor x ∈ Rn×N×D

+ , where D denotes different days of the week (producing different heatmaps), n refers to the total
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number of nodes in the graph, and N denotes the length of the time series. So, each threshold heatmap can be
represented as an image (a second-order tensor, I : τ ∈ Rn×N′

+ ). Since we divide the time of the day into 15-minute
time windows, so N′ = (60/15) × 24 = 96.

The Bilateral Filter, denoted by BF [.], can be defined as a function that takes in an image I as input, and returns
an image BF[I] whose pth pixel intensity is given by:

BF[I]p =

∑
q∈S

Gσs (‖p − q‖)Gσr

(
Ip − Iq

)
Iq∑

q∈S
Gσs (‖p − q‖)Gσr

(
Ip − Iq

) (12)

where S and R denotes the space domain (set of possible pixel locations in an image) and range domain (set of
possible pixel values) respectively. Gσs is a two-dimensional spatial Gaussian kernel while Gσr is a range Gaussian
kernel where σs and σr are the spatial and range filtering parameters for the image I. The kernel can be represented
as:

Gσ (x) =
1

2πσ2 exp
(
−

x2

2σ2

)
(13)

Thus, Gσs (‖p − q‖), which defines the spatial distance, decreases influence of spatially distant pixels compared
to the position p. The parameter σ defines the extension of the neighborhood. Similarly, Gσr

(
Ip − Iq

)
decreases

influence of q pixels with color intensities different from that of p (Ip).
The range parameter σr differentiates bilateral filter from Gaussian filter which only takes into consideration

spatial (location) closeness for smoothing. As σr increases, the bilateral filter converges to a Gaussian blur filter. As
σs increases, larger features are smoothed. Both spatial and range weights are multiplied in bilateral filter; thus, no
smoothing occurs even if one weight approaches zero. For example, a narrow range Gaussian combined with large
spatial Gaussian will produce limited smoothing in spite of large spatial extent. The contours are maintained by the
range weight. This will help the bilateral filter to remove noisy thresholds from the heatmap while maintaining the
sharp edges formed by recurrent congestion patches. Please refer to Paris et al. (2007) for a detailed review.

3.3.2. Total Variation based Threshold Denoising
Total variation (TV), first proposed by Rudin et al. (1992), has been used extensively for image denoising problems

since they are known to denoise the image without smoothing the object boundaries. Many algorithms have been
developed in the past for total variation based image denoising. Rodrı́guez (2013) provides a detailed review of the
different methods developed for TV-denoising. In this study, we adopted the algorithm proposed by Chambolle (2004)
for solving the minimization problem of total variation of an image. As explained in Section 3.3.1, the image can be
expressed as a second-order tensor, given by I : τ ∈ Rn×N′

+ . Denoting X = Rn×N′
+ and Y = X × X, for any u ∈ X, the

gradient ∇u ∈ Y is given by

(∇u)i, j =
(
(∇u)x

i, j , (∇u)y
i, j

)
(14)

with

(∇u)x
i, j =

ui+1, j − ui, j if i < n,
0 if i = n,

(15)

(∇u)y
i, j =

ui, j+1 − ui, j if j < N′,
0 if j = N′,

(16)

Then, the discretized total variation can be defined as

J (u) =
∑

1≤i≤n,
1≤ j≤N′

∣∣∣(∇u)i, j

∣∣∣
Y (17)
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where the standard Euclidean scalar product is given by

〈p, q〉Y =
∑

1≤i≤n,
1≤ j≤N′

p1
i, j

q1
i, j

+ p2
i, j

q2
i, j

for all p, q ∈ Y , p =
(
p1, p2

)
and q =

(
q1, q2

)
. Then, Equation 17 can be written as

J (u) = sup
{
〈p,∇u〉Y : p ∈ Y,

∣∣∣pi, j

∣∣∣ ≤ 1∀i, j
}

(18)

Now, a discrete divergence operator div:Y → X can be introduced ∀p ∈ Y and ∀u ∈ X defined by,

〈−divp,∇u〉X = 〈p,∇u〉Y

It can be easily shown that the div is given by

(divp)i, j =


p1

i, j − p1
i−1, j if 1 < i < n,

p1
i, j if i = 1,
−p1

i−1, j if i = n,
+


p2

i, j − p2
i, j−1 if 1 < j < N′,

p2
i, j if j = 1,
−p1

i, j−1 if i = N′,
(19)

From the definition of divergence operator and Equation 18, we can write

J (u) = sup
v∈KF

〈u, v〉X

where KF is given by {
divp :: p ∈ Y,

∣∣∣pi, j

∣∣∣ ≤ 1∀i, j
}

It can be shown that determination of nonlinear projection π 1
λ KF

( f ) leads to solving the following constrained
minimization problem (Chambolle, 2004; Duran et al., 2013).

min
{
‖λdivp − f ‖2X : p ∈ Y,

∣∣∣pi, j

∣∣∣2 − 1 ≤ 0,∀i, j
}

(20)

From Karush-Kuhn-Tucker optimality conditions (Hiriart-Urruty and Lemaréchal, 1993; Ciarlet, 1982), we get:

−∇(λdivp − f )i, j + αi, j pi, j = 0 (21)

where either
∣∣∣pi, j

∣∣∣ < 1, αi, j pi, j = 0, and ∇(λdivp − f )i, j = 0; or
∣∣∣pi, j

∣∣∣ = 1 and αi, j pi, j > 0. Thus,

αi, j pi, j =
∣∣∣∇(λdivp − f )i, j

∣∣∣
Chambolle (2004) proposed a semi-implicit gradient descent algorithm for solving the minimization problem. For

denoising parameter λ, tolerance parameter t, time-step τ, and while max
∀i, j

{∣∣∣∣pn+1
i, j − pn

i, j

∣∣∣∣} > t,

pn+1
i, j =

pn
i, j + τ(∇ (divpn − f /λ))i, j

1 + τ
∣∣∣(∇ (divpn − f /λ))i, j

∣∣∣ (22)

Chambolle (2004) showed that the algorithm converges for τ ≤ 1/8. In this study, we chose t = 0.0002 and our
objective is to determine the optimal denoising parameter λ. Interested readers can also refer to Duran et al. (2013)
for a detailed description of Chambolle’s algorithm.
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3.4. Overall AID framework
The flowchart of the proposed AID algorithm framework is shown in Figure 2. Historical traffic data are processed

weekly in MapReduce for univariate speed thresholds computation of 15-minute windows for each segment and day-
of-week. The speed thresholds can be generated using SND, MAD, or IQD method. Next, the thresholds are used to
generate speed threshold heatmaps for each road and direction. These heatmaps are denoised using total variation or
bilateral filter. The thresholds are matched with real-time speed data and when speed is less than the threshold value
for 3 consecutive intervals, an incident alarm is triggered. This persistence test is performed to reduce false alarms
generated due to spurious noise in real-time data. While increasing the duration of persistence test will result in further
delay in detecting incidents, decreasing the duration can lead to an increase in false alarms due to the noisy real-time
speed values. Hence, we used three intervals similar to the previous studies (Ren et al., 2012; Li et al., 2013).

Figure 2: Illustration of the AID algorithm framework

3.5. Performance Measures
Incident detection performance has been evaluated in terms of the performance measures used in past studies

(Parkany and Xie, 2005; Ren et al., 2012; Li et al., 2013). This involves determination of 4 performance measures:

1. Detection Rate (DR) is the ratio of number of incidents detected by AID algorithm to the total number of
incidents occurred.

DR =
Total number of detected incidents
Total number of actual incidents

× 100% (23)

2. False Alarm Rate (FAR) is used for penalizing false calls and is defined as the ratio of the number of false
alarms reported to the total number of AID algorithm application. For example, if traffic data is reported at
one-minute interval for a particular segment and AID algorithm is applied for each record, then the number of
algorithm application is equal to 60. Thus, if 5 records out of them is reported as false calls, then FAR is equal
to [(5/60) × 100] % = 8.3%.

FAR =
Total number of false alarm cases

Total number of algorithm applications
× 100% (24)
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Besides this, we also calculate the average daily false alarms. Based on a nationwide survey on traffic manage-
ment centers (TMC), Williams and Guin (2007) reports that a maximum number of ten false alarms per day
is found to acceptable by TMCs. Higher false alarms are found to create negative impacts on TMC operators
and managers and impacts the overall efficiency of the AID algorithm. In this study, we maintain this limit of
maximum ten false alarms per day and reports whenever the number of daily false alarms are higher than this
limit.

3. Mean Time to Detect (MTT D) takes into consideration the latency involved in the AID algorithm. It is defined
as the average of time elapsed between the actual start of the incident and time when the incident is first detected
by the algorithm.

MTT D =
Total time elapsed between detecting incidents

Total number of incidents detected
(25)

4. Performance Index (PI), given by Equation 26, brings together all 3 performance measures (DR, FAR, and
MTT D) into a single measure to find out the overall performance of the AID algorithm. PI is believed to be
one of the best possible measures to reflect the performance of AID during model selection (Ren et al., 2012;
Weegberg et al., 2010; Cheu et al., 2003). Minimizing PI is the optimization objective used during cross-
validation. Since DR can be 100% or FAR can be 0% during training, the PI measure is slightly modified with
the constants (1.01 and 0.001) to handle such cases, similar to (Ren et al., 2012). As suggested by Baldi et al.
(2000), any attempt to represent multiple measures to a single number will result in loss of information. PI is
believed to one of the best measures to portray AID performance during model selection. However, federal and
state transportation agencies can either use PI for selecting model parameters or use their individual judgment
to strike a balance between DR, FAR, and MTT D.

PI =

(
1.01 −

DR
100

)
×

(FAR
100

+ 0.001
)
× MTT D (26)

4. Data Description

The data used in the study comprises traffic speed data and crash data from Interstate Freeways I-80/35 and I-
235 of the Des Moines region, in Iowa, USA. The Des Moines region experiences the majority of Iowa’s freeway
congestion (62% of slow traffic events) along with one of the highest concentration of traffic incidents within the state
(Kapsch, 2016). Hence, it is a challenging task to separate traffic incidents from recurring congestion events in such a
network and develop a reliable AID framework.

Since traffic speed is the primary input in this AID algorithm, the incidents which didn’t impact traffic speeds,
such as stalled vehicles in shoulders, were not considered in this study. Thus, only lane-blocking incidents which
caused an impact to traffic were included in the incident dataset. Each incident was manually verified using nearby
cameras. The study period extended from April 2017 to October 2017. A total of 210 lane-blocking traffic incidents
were reported during this period in the study region. The incident reports were obtained from the Traffic Management
Center records in Ankeny, Iowa. The incident reports included information on the location of the incident (latitude,
longitude, road, and direction), start and end time of the incidents, and also the incident type. The following incident
classes were included in this study: 1-vehicle crash, 2-vehicle crash, 3+ vehicle crash, stalled vehicle, and debris.
Construction reports and slow traffic events (not associated with any traffic incidents) were excluded from the incident
database. All the incidents were manually verified with the cameras installed in the freeways.

High-resolution probe-based traffic speed data, provided by INRIX (INRIX, 2018) is used in this study. INRIX
uses on-board GPS devices in trucks, taxis, buses, and passenger cars to estimate the real-time travel time and speed
of freeways and arterial segments. The entire road network is divided into approximately 0.5 miles long segments and
average speed data is reported in 1-minute interval. Since the quality of probe-based speed data depends on the number
of probe vehicles available, INRIX reports two parameters, confidence score and c-value, to denote the reliability of
each traffic record. Confidence score can take 3 values: 10, 20, and 30. Confidence score of 30 indicates that only
real-time probe vehicles are used for reporting real-time speed. On the other hand, confidence score 10 indicates
historical traffic speed data and is used to report traffic speed of a segment due to unavailability of probe vehicles.
When a mix of real-time probe data and historical speed data is used, then confidence score of 20 is reported. C-value
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Figure 3: Study region in Des Moines, Iowa

is an additional reliability parameter provided by INRIX only when confidence score is 30. C-value can range from
0-100 and provides a relative measurement of number of probe-vehicles used for real-time speed report. Interested
readers can refer to Haghani et al. (2009); Sharma et al. (2017); Ahsani et al. (2018) for further details on INRIX data
and its quality assessment. Since traffic incident detection requires real-time speed reports, we used traffic speed data
corresponding to confidence score of 30 and c-value greater than 30, as suggested by Haghani et al. (2009). With the
considerably high traffic volume in the study region (annual average daily traffic of 70,000 vehicles in 2017), more than
98% of the traffic speed records used in this study were found to be real-time. However, it will be interesting to find
out the effects of missing data or the absence of real-time data on incident detection performance. This is important
because such missing data can impact the AID performance in both training and implementation phases. Quiroga et al.
(2005) and Dia and Rose (1997) performed thorough analyses on finding out the impacts of such data quality issues
on incident detection performance. For example, sensitivity analysis can be performed to determine the impacts of
such missing data. Also, random noise such as white noise can be inserted into the datasets to determine the stability
in performance metrics while handling such noisy data. Besides this, a similar consideration of data quality must be
performed when utilizing other types of data sources such as radar-based or loop-based data for developing similar
AID algorithms. These data sources include additional traffic variables such as volume and occupancy along with
the speed values which can be used for incident detection. Thus, assessing the importance of including or excluding
one or more variables on AID performance can give useful insights when the detectors fail to capture all the traffic
variables. Future studies can also look into such analyses to determine their effects on AID algorithm performance.

5. Results

As explained in Section 3, our incident detection framework consists of two distinct steps: (a) univariate speed
threshold computation and (b) multivariate spatio-temporal speed threshold denoising. Next, we discuss the results
obtained in each step.
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5.1. Univariate Thresholds Computation

The first step for incident detection is the determination of speed thresholds from 8 weeks of historical traffic
data. This involves determination of the optimum threshold constant c for each the 3 methods, SND, MAD, and IQD
(see Equations 5, 6, and 7 respectively). Figure 4 shows the variation of the different performance measures (DR,
FAR, MTT D, and PI) for different values of the threshold constant (c) for the 3 AID methods (SND, MAD, and
IQD). The main objective here is to determine the best of the three methods, SND, IQD, and MAD and also their
corresponding optimum threshold constant c. As stated in Section 3.5, federal or state transportation agencies can
choose the threshold constant (c) based on minimum PI obtained here or use their individual judgment to strike a
balance between DR, FAR, and MTT D.

Figure 4a shows that while MAD has the least variation of DR with increasing values of c, DR decreases sharply
for SND for higher values of c. On the other hand, FAR remains fairly high for all values of c for MAD while the
least FAR is achieved for SND. This behavior is atypical in the machine learning community where better DR comes
at the cost of higher FAR. IQD tries to achieve “best of the two worlds” where DR remains significantly high without
producing too many false calls. MTT D remains fairly constant for all 3 methods for higher values of c except for
SND where MTT D increases for higher c values. The combined performance with all 3 measures is depicted by PI
in Figure 4d. It shows that SND being sensitive to outliers or anomalies is very sensitive to the threshold constant c.
The minimum PI is obtained for IQD with cIQD = 2.2. In the rest of this study, the optimum cIQD = 2.2 is used for
threshold determination. Speed thresholds for a sample segment with optimum c value for each of the 3 methods are
shown next to discuss the advantages and disadvantages of each method.

Figure 5 shows the speed threshold values for a particular segment of I-235 E for a given weekday. The recurring
morning peak congestion resulted in low threshold values between 7 AM to 9 AM as shown in Callout (ii). However,
MAD has higher speed thresholds (≥ 30 mph) compared to both IQD and SND (20 mph to 30 mph threshold values).
Evening peak, shown in Callout (iii), has a lower effect on traffic compared to morning peak primarily because evening
peak affects mostly opposite direction of traffic (I-235 W). Nonetheless, speed thresholds are still highest for MAD
and lowest for SND in evening peak time too. IQD follows closely to the SND thresholds during peak times. However,
night-time construction during 1 out of 8 weeks of historical data resulted in low threshold values during night-time
for SND, as shown in Callouts (i) and (iv). IQD and MAD, being robust to outliers, are not affected by such sporadic
night-time congestion due to construction purposes and produces higher speed thresholds. This means that incident
alarm will be triggered during night-time with IQD and MAD methods if congestion occurs due to an incident (which
requires the attention of traffic incident managers) or due to some night-time construction (which traffic incident
managers are already aware of from construction schedule).

SND, on the other hand, might miss such an incident due to lower threshold values. Similarly, low thresholds by
SND during peak times will result in lower incident detection rates along with low false alarm rates. On the other
hand, MAD having high threshold values even during peak times will lead to higher detection rates at the expense
of high false alarm rates too. IQD attempts to achieve the “best of the two worlds” with low threshold values during
peak times while maintaining high thresholds all other times. This is further demonstrated in Figure 4 where SND
has lowest DR along with the lowest FAR while MAD has the highest DR along with highest FAR. IQD, on the other
hand, has significantly high DR but with not too high FAR. Thus, IQD can be used a significantly better alternative
than the popular SND algorithm for obtaining high incident detection rates without compromising too many false
alarms.

We also experimented with 2 weeks, 4 weeks, and 12 weeks of historical data to find out the optimal number
of weeks to be considered for threshold computation from historical data. Figure 6 shows the variation of different
performance measures (DR, FAR, Daily False Alarms count, MTT D, and PI) for different values of the threshold
constant (c) for 2 weeks, 4 weeks, 8 weeks, and 12 weeks of historical data. Since IQD is found to be the best of
the three methods (SND, MAD, and IQD) from the previous discussion, we only considered the IQD method for
threshold computation here. From Figure 6, it can be seen that while 4 weeks and 8 weeks of historical data provide
almost similar performance with 8 weeks being slightly better in terms of PI and FAR, 2 weeks and 12 weeks of
historical data usage result in two extreme performances. It can be recalled from Section 3.5 that lower PI means
better performance of AID algorithm. 2 weeks of historical data results in significantly low DR (less than 80%) and
hence higher PI. On the other hand, using 12 weeks of historical data produces almost 100% DR and very low
MTT D values, but the FAR increases significantly. This is evident in Figure 6c which clearly shows that 12 weeks
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(a) (b)

(c) (d)

Figure 4: Variation of (a) DR, (b) FAR, (c) MTTD, and (d) PI for different threshold constants c for SND, MAD, and IQD methods

of historical data with DR ≥ 90% (c ≤ 3) also produces average daily false alarm counts significantly higher than the
acceptable limit of 10 false alarms per day, as discussed in Section 3.5. Hence, we do not consider 12 weeks data
in our further analysis even though it achieves the minimum PI. This shows that, even though PI is believed to one
of the best measures to portray AID performance during model selection, it is clear that other performance measures
(DR, FAR, and MTT D) should also be simultaneously monitored particularly when DR is close to 100% or FAR is
close to 0%. Future studies can also look into developing alternate better performance measures which can handle
these issues. Nonetheless, this discussion makes it clear that either 4 weeks or 8 weeks of historical data usage can
be used for the optimal performance of our AID algorithm. On the other hand, 2 weeks and 12 weeks of data usage
lead to either very low DR values or very high FAR, which are unacceptable for real-world implementation. Since 8
weeks of historical data produced slightly better PI in our analysis, our remaining analysis is performed with 8 weeks
historical data.

5.2. Multivariate Spatio-Temporal Threshold Denoising

IQD and other univariate threshold computation methods (e.g., SND and MAD) do not take into consideration the
spatio-temporal correlations of the 15-minute threshold windows. Thus, thresholds computed can be noisy and can
be improved by considering the topology of the network. In this study, we considered the speed thresholds for all
segments in a particular direction for a given day and week as a “speed heatmap” and performed two image denoising
techniques, bilateral filter and total variation, to obtain smoother accurate threshold information. Figure 7a shows a
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Figure 5: Sample speed thresholds of SND, MAD, and IQD for a particular segment in a given weekday

sample raw threshold speed heatmap, the denoised one with bilateral filter (7b), and also with total variation (7c).
It can be seen that the denoising techniques helps to remove the intermittent or sporadic low threshold values,

shown in ‘Callout (i)’, generated typically during night times or non-peak hours either due to some outlying obser-
vations caused by incidents or other data issues. On the other hand, the threshold speed values at the edges of peak
time congestion (as shown in ‘Callout (ii)’) gets increased slightly with total variation (7c) denoising compared to the
raw threshold heatmap (7a). However, bilateral filter maintains the edges intact since it considers both the spatial and
color range kernels for smoothing purposes. This attribute is important for incident detection because an increase in
threshold values at edges of peak hours might result in missing incidents occurring during those times, which in turn
will result in lowered incident detection rates.

Incident detection performances will vary depending on the amount of denoising. Hence, our next objective is
to find out the optimal hyperparameters for denoising. The two hyperparameters in bilateral filter denoising are σs

and σr, given in Equation 12. Optimal σr usually depends on the amount of noise in the image and estimated in
terms of σr/σn(Zhang and Gunturk, 2008), where σn denotes the noise standard deviation. Since σn is unknown for
the speed threshold heatmaps, we used the ratio σr/σi for hyper-parameter selection where σi denotes the standard
deviation of image. We assume here that the noise in the heatmap is proportional to color range in the heatmap, which
can be considered as a standard normalization procedure (Zhang and Gunturk, 2008). Other than this heuristic-driven
hyper-parameter selection, hyper-parameter selection can also be performed using advanced optimization techniques
such as particle swarm optimization (Wang et al., 2017) or machine learning based methods (Dong et al., 2018). Such
techniques can be applied in future studies to find out the improvements in AID performance.

Figure 8 shows the contour plot of the variation of DR, FAR, MTT D, and PI with σs and σr/σi. Figure 8a shows
that DR is improved from 91.5% to 96% with increase in σs and σr/σi > 1. Although FAR also increases with
denoising, however the increment is only from 0.12% to 0.136%. MTT D is found to increase from 8.4 minutes to 9.1
minutes from higher σs and σr/σi, except for very high σs and σr/σi (σs > 6 and σr/σi > 2). Although FAR and
MTT D are found to increase marginally with increase in denoising, however the overall performance index is found
to improve (lower PI) with denoising the speed threshold heatmaps, as shown in Figure 8d.

Total variation denoising depends on the optimal hyper-parameter λ (see Equation 22). To compare the perfor-
mance of total variation (TV) with bilateral filter (BL) denoising simultaneously, Figure 9 shows the variation of DR,
FAR, MTT D, and PI w.r.t λ for TV and σs for BL. Since BL has two hyper-parameters (σs and σr), for each σs, the
σr/σi producing optimal PI is used. Figure 9a shows that although DR improves with denoising for BL, however it
is found to decrease for TV denoising. On the other hand, while FAR and MTT D remains fairly constant with TV
denoising, they are found to increase slightly with BL denoising (Figures 9b and 9b). Overall, PI improvement (i.e.,
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(a) (b)

(c) (d)

(e)

Figure 6: Variation of (a) DR, (b) FAR, (c) FAR count, (d) MTTD, and (e) PI for different threshold constants c for SND, MAD, and IQD methods

decrease in PI) is only obtained for BL denosing while for TV, PI is found to increase primarily due to lowering of
DR with increased TV denoising. Thus, bilateral filter (BL) denoising for speed threshold heatmaps helps to achieve
improved incident detection performances while total variation (TV) denoising fails to achieve such improvement. To
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(a)

(b)

(c)

Figure 7: Speed threshold heatmap in mph (a) without denoising, (b) bilateral filter denoising, and (c) total variation denoising
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(a) (b)

(c) (d)

Figure 8: Contour plots showing variation of (a) DR (%), (b) FAR(%), (c) MTTD (mins), and (d) PI with σs and σr/σi
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further investigate the reason for such behavior, we plotted the change in DR and FAR over the time of the day with
increase in denoising by BL and TV.

(a) (b)

(c) (d)

Figure 9: Variation of (a) DR (%), (b) FAR(%), (c) MTTD (mins), and (d) PI with denoising parameter, σs for bilateral filter and λ for total variation

To find out the effect of denoising of threshold heatmaps on DR and FAR, the hourly improvement in DR and
FAR with respect to raw heatmaps are shown in Figures 10 and 11 respectively. The DR and FAR change is obtained
by subtracting hourly DR and FAR obtained using denoised heatmaps to those obtained using raw heatmaps. Figure
10a shows that although total variation denoising with λ > 5 helps in improvement of DR during morning peak hours
(7 AM), however DR decreases during evening peak hours (4 PM and 5 PM) for all values of λ. This can be attributed
to the increase in threshold speed values due to denoising by total variation in evening peak hours, shown in Callout
(ii) of Figure 7. On the other hand, bilateral filter denoising helps in improving DR in both morning and evening
peak hours since it doesn’t affect the low threshold values due to the color range parameter (σr). As expected, an
increase in DR also comes at the cost of an increase in FAR and vice versa as shown in Figure 11. For total variation
denoising, FAR increases during morning peak hours and decreases during the transition from morning peak to normal
conditions. During evening peak hours, although FAR decreases in the beginning (4 PM), however, it increases again
during the later phase of evening peak hours. As an end result, FAR remains almost constant with total variation
denoising as seen in Figure 9b. On the other hand, FAR increase due to bilateral filter denoising, which is expected
given the fact that DR increased with denoising. Thus, it can be stated that the primary reason for the reduction of DR
and in turn, reduction of PI for total variation denoising is primarily due to missing of detected incidents during peak
hours congestion where speed threshold increases due to total variation denoising. Bilateral filter, on the other hand,
maintains low threshold values intact even during peak hours with removal of spurious noisy thresholds and achieves
better detection performance (higher DR and PI) compared to raw threshold values generated by univariate threshold
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computation (IQD).

(a) (b)

Figure 10: Hourly change in DR due to speed threshold denoising by (a) total variation and (b) bilateral filter

(a) (b)

Figure 11: Hourly change in FAR due to speed threshold denoising by (a) total variation and (b) bilateral filter

6. Conclusions

Automatic traffic incident detection has been identified to be crucial for the reduction of non-recurrent congestion
caused by incidents. In this study, we proposed an AID framework can be implemented over large traffic networks
due to the inherent parallel computation involved in the framework. The proposed methodology consists of two major
improvements to the AID algorithms developed in past literature. The first step of our AID framework consists of
the estimation of robust summary statistics (speed thresholds) across non-overlapping windows of time series data
produced from each road segment. This dimension reduction step can be parallelized using MapReduce framework
making it feasible to apply the algorithm over large traffic networks. We then visualize these summary statistics
as threshold heatmaps leveraging the spatio-temporal correlations of the time windows and perform multivariate
denoising of the heatmaps. Such denoised thresholds can produce more accurate representations of the normal traffic
patterns which in turn can help in increasing incident detection performance.

To produce robust summary statistics for the non-overlapping time windows of each time series traffic data, we
proposed MAD and IQD methods in place of the popular SND algorithm. In these methods, we replace the mean and
standard deviation measures which are known to be prone to outliers with the comparatively robust statistics such as
median, MAD, and IQD. SND being prone to outliers is found to be affected by occasional low speeds caused due
to incidents or traffic constructions. This results in lowering speed thresholds which in turn produces low incident
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detection rates while having false alarm rates comparable to IQD. MAD, on the other hand, is found to produce
high threshold values even during peak hours thereby resulting in significantly higher false alarm rates than SND or
IQD. Our results show that the IQD method, which uses median and IQD as summary statistics, achieves the best
performance overall in terms of incident detection. It can achieve high incident detection rates without increasing
false alarm rates significantly.

In our next step, we construct heatmaps with the IQD thresholds and perform image denoising of the heatmaps. We
used two edge-preserving image denoising techniques, bilateral filter and total variation. Our results show that speed
thresholds increase in the recurrent congestion patches due to total variation denoising. As a result, the detection
rate decreases and the overall performance, given by PI, deteriorates. Bilateral filter, on the other hand, preserves
the edges and the low thresholds in recurrent congestion patches intact and simultaneously removes spurious noisy
thresholds. This helps in achieving higher detection rates with bilateral filter denoising without increasing false alarms
significantly thereby improving the overall performance of the AID algorithm.

One of the major contributions of the study is the development of an AID algorithm that can be easily transferred
and implemented over large-scale traffic networks. With the advent of big-data tools, data-driven methodologies
can now be applied to massive datasets instead of searching for statistical subsampling for data manipulation and
aggregation. In this study, we have preferred to use simple data-driven approaches that essentially predicts a different
threshold range for each sub-segment instead of finding a transferable statistically complex technique which can be
generalized to multiple segments. In other words, it uses big-data manipulation tools to generate site-specific indices
instead of searching for complicated models which essentially try to make the predictions transferable either to account
for non-observability or reduced computation power during inferencing.

The entire framework is data-driven in nature and can be easily extended in other data-set or traffic networks.
However, real-world implementation of such an AID framework will also involve some thoughtful decision making
and challenges which can be addressed in future studies. First, state or federal transportation agencies can decide to
strike a balance between DR, FAR, and MTT D based on their specific requirements. PI is one such measure that
has been used in this study for this purpose. However, the agencies can decide on the minimum DR or maximum
allowable FAR based on their needs for optimal performance and reliability of the AID algorithm. Second, the
present AID framework doesn’t take into consideration abrupt weather changes or other scheduled events such as
snowstorms, game days, etc. which can impact traffic significantly. Detecting traffic incidents during such extreme
event days is challenging and requires further research. Third, the impacts of missing data and other data quality issues
on AID performance needs to be investigated for real-time implementation purpose. Future studies can look into
these aspects to build a more robust AID algorithm. Extending this AID framework to complicated traffic networks
will also of significant interest and scope of research in future. There is also a scope of further improvements on
the AID framework presented here. This study assumed uniform weights for the road segments while constructing
threshold heatmaps. In future, it can be improved by using weights based on the road segment length or finding out
the optimal weights using data-driven methods. The denoising framework can also be parallelized thereby unifying
the entire system setup. And other advanced image denoising techniques can be applied to obtain better estimates of
the thresholds from heatmaps.
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