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Abstract

In recent years, Intelligent Transportation Systems (ITS) have seen more efficient and faster development through the
implementation of Deep Learning (DL) techniques, especially in problem domains previously addressed using analytical or
statistical solutions. Improvements resulting from DL applications have facilitated better traffic management and traffic plan-
ning, increased safety and security on transit roads, decreased maintenance costs, and more optimized public transportation
and ride-sharing company performance, in addition to having advanced driverless vehicle development to a new level. This
paper’s primary objective is to provide a comprehensive review and insight into the applications of DL models on ITS, ac-
companied by presentation of the progress in ITS research that has been due to DL studies. First, different DL techniques
are discussed, and then an in-depth analysis and explanation of the current applications of these techniques on transportation
systems is provided. This paper’s outline of the impact of DL on ITS demonstrates the significance of DL in the ITS domain.
Finally, different embedded systems used for deployment are described and their advantages and disadvantages are discussed.
Through this paper’s systematic review, the credible benefits of DL models on ITS are delineated and key directions for future
DL research in relation to ITS are identified.
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1. Introduction

The emergence of machine learning and its substitution for several statistical models have led to better problem-solving,
which in turn has led various fields of study to turn their research paths to take advantage of this new method. Transportation
systems have been influenced by the growth of machine learning, particularly in Intelligent Transportation Systems (ITS).
With the proliferation of data and advancements in computational techniques such as Graphical Processing Units (GPUs),
a specific class of machine learning known as Deep Learning (DL) has gained popularity. The capability of DL models to
address large amounts of data and extract knowledge from complex systems has made them a powerful and viable solution in
the domain of ITS. A variety of networks in DL have helped researchers to formulate their problems in a way that can be solved
with one of these neural network techniques. Traffic signal control for better traffic management, increasing the security of
transportation via surveillance sensors, traffic rerouting systems, health monitoring of transportation infrastructure and several
other problems now have a strong new approach, and for several challenging problems in transportation engineering, new
solutions have been created.

There have been several surveys of the literature on the application and enhancement of ITS using DL techniques. How-
ever, most of these have tended to focus on a specific aspect of DL or a specific aspect of ITS. For instance, [1] conducted
a survey of big data analytics in ITS. A review of computer vision playing a key role in roadway transportation systems
was discussed in [2]. While [3] reviews DL models across the transportation domain, it is not a comprehensive survey that
encompasses all current research publications on the ITS domain and DL. One dedicated review on enhancing transportation
systems via DL was done in [4] where substantial research was included, but it focused primarily on traffic state prediction
and traffic sign recognition tasks. The ITS domain includes other tasks, such as public transportation, ride-sharing, vehicle
re-identification and traffic incident prediction and inference tasks, which are all represented in this paper to make its extent
more comprehensive and holistic. The transportation and research community has always taken notice of pivotal research
directions, with the earliest review of neural nets applied to transportation [5], where the critical review spanned the classes
of problems, neural nets applied and the challenges in addressing various problems. It is this that motivates of the question
we address in this paper: How effective and efficient are the current DL research applications for the domain of ITS? To the
best of the authors’ knowledge, the literature in this field has suffered from the lack of a holistic survey that takes a broader
perspective of ITS as a whole and its enhancement using DL models.

The purpose of this paper is therefore to present the systematic review we have conducted on the existing state of the
research on ITS and its foray into DL. In section 2, we discuss our approach taken to identify relevant literature. In section 3,
we talk about different methods of DL network systems and breakthrough research on those methods. In section 4, we talk
about different applications of DL methods in transportation engineering, specifically 6 major application categories in ITS.
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In section 5, we investigate different available embedded systems, or devices that can facilitate the running of neural network
experiments. Finally, in section 6, we provide a summary and an outlook for future research.

The research methodology which is followed in this paper is PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses)[6]. Following this method, we first produced a questionnaire and in each paper we reviewed, we looked
for answers to these questions. The focus of these questions is about the gap which each paper tries to address, their proposed
solutions and finally the performance of these solutions for their datasets.

2. Research Approach and Methodology

This paper performs a detailed analysis of existing studies on Intelligent Transportation Systems (ITS) and Deep Learning
(DL). Articles were searched in multiple databases using the search strategy described below. The collected articles were then
reviewed and organized. The scope of this review was restricted to conference proceedings and journal articles, including
existing literature reviews.

Relevant articles were primarily obtained by querying the TRID TRB database [7], where the search terms included
“deep learning”, “convolutional”. These search terms were sought in the title, abstract and notes. Then the references of
the papers identified were examined to trace other trusted journals and papers. Also, online searches on various databases
such as Scopus, ScienceDirect, IEEE, and ArXiv were done. All papers obtained were included in this review if they met the

following criteria:

e Describe solutions to ITS problems using DL, as identified by methodology sections that include DL-based model
development

o Published between January 2015— October 2019 (during which period the majority of research so far using DL in ITS
has been conducted)

Not a book, book chapter, dissertation, thesis or technical report
e Not a general introduction to ITS

Not in the domain of autonomous vehicles

Though DL boom was spawned by the ImageNet project in 2012 [8] and applications of DL on ITS first appeared in 2013,
substantial growth in ITS research by means of DL methodologies didn’t started until 2015. This is illustrated in Figure 1.
Since then, there has been a steady growth in the prominence of DL-based ITS studies across journals and conferences. In the
year 2019, up until October, 43 papers have been published across various ITS applications. In light of the marked increasing
importance of DL as an ITS research method, in the following section, we will discuss and review the various DL structures
and then their key applications in the ITS domain.
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Figure 1: Year-wise publication growth in ITS domains



3. Background on techniques in deep learning

3.1. Deep Neural Networks (DNN)

Deep learning (DL) is a specific subcategory of machine learning where several layers of stacked parameters are used for
the learning process [9]. These parameters are component representations of different aspects which can affect the result of
the network. Each layer contains several perceptrons (known also as neurons or hidden units) which carry weights for the
parameter. The input of each layer is multiplied by these parameters and therefore the output is a representation of the impact
of each parameter on the input. Usually after each layer or several layers of neurons, a nonlinearity function such as the tanh,
sigmoid, or rectified linear function (ReLU) [10] is used to generate the output layer. All these layers combine to form a Deep
Neural Network (DNN) [11]. There are two major challenges in building a DNN: first, designing the structure of the network,
which includes the number of layers, number of neurons in each layer, and nonlinearity function type; and second, adjusting
the weight of the parameters to train the network on how it should perceive the input data and calculate the output. For the
first challenge, what is usually most helpful is simply trial and error and overall experience. For the second challenge, the
back-propagation method is the most popular method to train the weight of parameters in a supervised manner. More detail
about this method can be found in [11]. Although all the techniques which will be discussed in the rest of this paper can be
classified as a subcategory of DNN, here in this paper, DNN is defined as the most simple structure of a network, in other
words, fully connected layers. In this fully connected model, there is a connection between all the neurons of one layer to all
the neurons in another layer, and for each connection, there is a weight which should be determined through back-propagation
method.

3.2. Convolutional Neural Networks (CNN)

One of the major applications of neural networks was Computer-Aided Detection (CAD) that aimed to increase classifi-
cation accuracy and inferencing time. A revolutionary method was proposed in [12] called Convolutional Neural Networks
(CNN). Inspired by the vision system of cats which are locally sensitive and orientation-selective, as presented in [13], [12]
suggested that instead of using fully connected layers of neural networks, it is possible to use a single kernel with shared
weights to wisp the entire image and extract the local features. The proposed method enhanced the detection effectiveness
both in terms of accuracy and memory requirement when compared with traditional methods, which required handcrafted
feature extractions [14].

CNN is a detection architecture that automatically learns spatial hierarchical features using back-propagation through the
network. A schematic figure of this architecture is presented in Figure 2a. These networks usually contain three types of
layers: convolution, pooling, and fully connected, where the first two are used to extract the features and the last one used as
a classifier [15].

The convolution layer consists of a combination of a convolution kernel, which counts as a linear part of the layer, and a
nonlinear activation function. The main advantage of using a kernel that shares weights in operation, is extracting the local
features and learning the spatial hierarchies of features efficiently by reducing the required parameters. Then the nonlinear
activation function maps the results onto the feature map. In order to reduce the number of parameters, usually one pooling
layer comes after a few convolutional layers in order to downsample the data, by taking the maximum unit (max pooling)
or the average (average pooling) of a collection of units and substituting it as a representative of these collections. After
extracting features and downsampling the data by the convolution and pooling layers, they are mapped onto the final output
by fully connected layers. The output of these layers usually is the same size as the number of classes and each output
indicates the probability of it belonging to that class. Finally, this string maps onto the final result by an activation function.
This activation function can be sigmoid for binary/multiclass classification; softmax for single/multiclass classification or to
identity continuous values in case the of regression [16].

Based on the fact that in order to train a deep model a large amount of data is needed, CNN and other models’ popularity
only began to rise when a large quantity of labeled data were provided for the ImageNet challenge [8]. Afterward, lots of
architectures have been proposed which use these CNN blocks to enhance the efficiency of CAD. Some of these methods are
AlexNet, Inception, VGGNet 16/19, Resnet, and etc. However, in order to increase the accuracy of detection, other concepts
have been used in the process. Some of these concepts are transfer learning, which uses the knowledge of the network from
pretraining on a large dataset in order to train the network on a smaller dataset [16]. The other method is training with an equal
prior instead of a biased prior in those cases where the dataset has a bias towards one of the classes (imbalanced dataset). In
this case, different sampling or resampling rates are applied to the dataset to balance it. The effect of these different methods
of changing the architecture, using transfer learning and balancing the dataset for various datasets are investigated in [17].

3.3. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs), another class of supervised DL models, are typically used to capture dynamic se-
quences of data. RNNs can successfully store the representation of recent inputs and capture the data sequence by introducing
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Figure 2: Figures depicting CNN and RNN schematic

a feedback connection to interpret the data. This ability can play the role of memory to pass information selectively across
sequence steps to process data at a certain time. Thus, each state depends on both the current input and the state of the network
at a previous time. In other words, there is a similarity between a traditional, simple RNN and Markov models [18]. In 1982,
the first algorithm for recurrent networks was used by [19] in order to do pattern recognition. In 1990, [20] introduced his
architecture, which is known as the most basic RNN. A schematic figure of this architecture is presented in Figure 2b. In this
architecture, associated with each hidden unit, there is a context unit which takes the exact state of the corresponding unit at
the previous time as an input and re-feeds it with the learned weight to the same unit in the next step.

Although training RNN networks seems to be straightforward, vanishing or exploding gradient problems remain the two
main difficulties. These problems can happen during learning from previous states when the chain of dependencies gets
prolonged and, in this case, it is difficult to choose which information should be learned from past states. In order to solve the
problem of an exploding gradient in recurrent networks, which can result in oscillating weights, [21] has suggested Truncated
Back-Propagation Through Time (TBPTT), which sets a certain number of time steps as a propagation limit. In this case,
to prevent exploding the gradient, a small portion of previously analyzed data is collected to use during the training phase.
However, this means that in the case of long-range dependencies cases, the former information related to these dependencies
will end up lost.

Long Short Term Memory (LSTM) architecture has been suggested by [22] to solve both these problems together. The
primary idea of this method is using a memory cell with only two gates of input and output. The input gate decides when
to keep the information in the cell and the output gate decides when to access the memory cell or prevent its effect on other
units. In recent years, several corrections and improvements have been made on LSTM architecture.

As described above, LSTM contains a memory cell that holds its state over time, and based on its regulation, controls how
this cell affects the network. The most common type of LSTM cell has been suggested by [23]. Several gates and components
which are added to this cell are different from the basic suggested LSTM by [22]. A logistic sigmoid function is usually
used as the gate activation, though due to the state-of-the-art design of [23], a tanh function is usually used as the block input
activation and block output activation. The forget gate and peephole connections were first suggested by [24] that enables the
cell to reset by forgetting its current state and passing the current state data from the internal state to all gates without passing
them through an activation function.

Finally, it is notable that [25] has proposed a gated recurrent unit (GRU) inspired by the LSTM block, where they have
eliminated the peephole connections and output activation function. They have also coupled the input gate and forget gate into
one gate called the update gate and what passes through their output gate is only recurrent connections to the block input. This
architecture is much simpler than LSTM and based on what it eliminates, it avoids a significant reduction in performance,
which makes it more popular to use.
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Figure 3: Figures depicting AE and GAN schematic



3.4. Autoencoders (AE)

One of the most important task in DL is access to a large amount of data to train the model. Usually, such a dataset is
not readily available and producing a rich dataset would be expensive. In this situation, unsupervised methods show their
value. Instead of training models using labeled data, unsupervised methods extract the features of unlabeled data and use
these extracted features to train the model. Autoencoders (AEs) are one such method which aims to reconstruct the input
data and in this manner is similar to principal component analysis. AEs are composed of two networks that are concatenated
to each other. The first network extracts and encodes the input data into its main features and the second network use these
features to reshape arbitrary random data to reconstruct something similar to the input data. The schematic figure of this
architecture is presented in Figure 3a. Although the concept of AEs has been used previously as a denoiser [26] and data
constructor [27], it found a new application as variational AEs [28]. To minimize the difference from input and output, [28]
have used the variational inference method. They introduced a lower bound on the marginal likelihood and tried to maximize
it to minimize the error between input and output. [29, 30] have explained exactly how a variational AE can be built.

Usually, an AE’s hidden layer is smaller than its input layer, although the opposite situation can happen as well. Also, the
horizontal orientation of AEs are defined as combining two or more AEs horizontally, and this can have different motivations
such as different learning algorithms (e.g., RBM, neural network, or Boolean) or different initialization and learning rates.
In addition to details about these situations, linear and nonlinear AEs have been studied by [31]. It has been shown that
a Boolean AE as a nonlinear type has the ability to cluster data and an AE layer on top can be used as a pretrainer for a
supervised regression or classification task.

3.5. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL) attempts to train a machine to act as an agent who can interact with the environment and
learn to optimize these interactions by learning from responses [32]. In RL, the agent observes the environment and gets a
state signal and chooses an action that impacts the environment to produce a new state. In the next step, a reward from the
environment and the new state is fed to the agent to help it decide more intelligently in the next step. The goal of an agent in
this setup is gaining the maximum reward over the long term by following an optimal policy. The algorithm of RL is usually
based on the Markov Decision Process (MDP) [33]. The problems that can be solved by RL algorithms can be divided into
episodic and non-episodic MDP. In episodic MDP, the state will reset at the end of the episode and the return (accumulation
of rewards for the episode) is calculated. In non-episodic MDP, there is no end of the episode and using a discount factor is
vital to prevent an explosion of return values [32].

There are two functions usually used in RL: the state-value function, also known as the value function, is the expected
return if the agent starts at a given state (no action limitation), whereas the action-value function, also known as the quality
function (Q-function) is the expected return of starting at a given state and taking a particular action. Usually, one of two
methods is implemented to solve an RL problem. In the first approach, the Q-function is predicted using different methods
of temporal difference controls such as state—action-reward—state—action (SARSA), which improves the estimation of Q. The
second approach is Q learning, which directly approximates the optimal Q. Both of these methods use bootstrapping and learn
from incomplete episodes.

Deep Reinforcement Learning (DRL) is an approach to solving the RL problem using a DNN. Although the history of
DRL began in the 1990s when [34] developed a neural network that reached an expert level in backgammon, its rebirth can
be considered as [35] who introduced Deep Q-Networks (DQN) as DNNs that can approximate Q instead of reading its value
from a Q table that indicates for each state what the Q value would be for taking each action. In this new method, complex
and high dimensional problems have potential to be addressed easily [35]. The model used by [35] extracted images from the
Atari games and used a combination of a CNN model and a fully connected layer on the data extracted from the images to
obtain an estimate of the Q value.

However, because of the complexity of DRL, it can be unstable. Therefore, much research has been focused on solutions
able to defeat this instability. Experience replay [36] and target networks [35] are the two most used techniques to make RL
stable. Other techniques include Double-Q learning [37] and dueling DQN [38], which have also been proposed to make
DRL more robust and stable. In Double-Q learning, the second estimator is used for estimating an extra assumptive Q’
to approximate the Q value more precisely. On the other hand, dueling DQN [38] uses a baseline instead of an accurate
calculation of Q value to learn relatives.

3.6. Generative Adversarial Networks (GAN)

Generative adversarial networks (GANs) are a specific class of deep learning networks that learn how to extract the
statistical distribution of training data to synthesize new data similar to real-world data. These synthetic data can be used
for several applications such as producing high-resolution images [39], denoising low-quality images, and image-to-image
translation [40]. Most of the generative models use the maximum likelihood concept to create a model that can estimate
the probability distribution of the training data and synthesize a dataset that maximizes the likelihood of the training data.



Although calculating maximum likelihood can directly result in the best action of the model, sometimes these calculations
are so difficult that it is more beneficial to implicitly estimate this amount. In the case of explicit density calculation, three
main types of models are popular:

o Fully Visible Belief Networks
e Variational AEs
e Markov Chain Approximations

All of these models, however, suffer from the problems of low speed, low quality, and early stoppage [41]. To overcome
these problems, [42] has suggested a method that does not require explicit definition of the density function. This model can
generate samples in parallel; no Markov chain is needed to train the model and no variational bound is needed to make it
asymptotically consistent.

This method has two models: the generative model which is responsible to pass random noise through a multilayer
network to synthesize samples, and the discriminative model, which is responsible to pass real data and artificial data through
a multilayer network to detect whether the input is fake or real. A schematic figure of this architecture is presented in Figure
3b. Both models use back-propagation and dropout algorithms: the generative model to create more realistic data and the
discriminative model to achieve better distinction between real and fake data.

When GANs were first proposed in both their generative and discriminative models, fully connected networks were
used. However, later in 2015, [43] suggested a new architecture named deep convolution GAN (DCGAN), which uses batch
normalization in all layers of both models, except the last layer of the generator and first layer of the discriminator. Also, no
pooling or unpooling layer is used in this architecture. A DCGAN allows the model to understand operations in latent space
meaningfully and respond to these operations by acting on the semantic attributes of the input [41].

The other improvisation on the GAN architecture has been conditional GAN [44], where both networks are class-
conditional, which means the generator tries to generate image samples for a specific class and the discriminator network
is trained to distinguish real data from fake data, conditional on the particular class. The advantage of this architecture is
better performance in multimodal data generation [45].

In the next section, we discuss and review the applications of deep learning models to transportation.

4. Applications in Transportation

4.1. Performance Evaluation

Before reviewing papers that have already used DL methods to investigate ITS applications, it is necessary to make clear
the model evaluation criterias used. The classification metrics are Accuracy (AC), Precision (PR), Recall (RL), Top I accuracy
and Top 5 accuracy, while the regression metrics are Mean Average Precision (mAP), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMS E).
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where T P=True Positive, T N=True Negative, F'P=False Positive, F N=False Negative.

Top I accuracy means the model’s top answer must match the expected answer.

Top 5 is when at least one of the model’s five highest probability answers must match the expected answer.

mAP is the mean of the average precision (AP) scores for every query, where AP is the area under the PR vs RL curve.
IoU is the ratio between area of overlap and area of union, between the predicted and the ground truth bounding boxes.
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where y; is the actual value of observed travel time, y; is the predicted value of travel time, and n is the number of
observations.

We now discuss different applications of deep learning in ITS. The included topics have been selected based on the
functional areas in ITS as mentioned in [46] and have been studied substantially over the period of 2012-2019.

4.2. Traffic characteristics prediction

One of the most considered applications of DL in transportation is related to traffic characteristics prediction. Traffic char-
acteristics information can help drivers to choose their routes more wisely and traffic management agencies to manage traffic
more efficiently. The main characteristics of interest are traffic flow, traffic speed and travel time. Since these characteristics
are not mutually exclusive, methods that are used to predict one of them also can be used to predict the value for the remaining
features. Due to this, methods used to make these predictions are discussed together as follows.

Based on the duration of prediction for each traffic characteristic, a forecast value is usually classified as short-term (S) for
predictions within less than 30 minutes, medium-term (M) for a prediction window between 30 to 60 minutes, and long-term
(L) within more than 60 minutes [47]. Since driving behavior and traffic characteristics can vary across locations, results from
one dataset are difficult to apply to other datasets [4]. Previously, traffic feature prediction has predominantly used parametric
and statistical methods, such as autoregressive integrated moving average (ARIMA) modeling, but most of the time these
methods have been incapable of predicting irregular traffic flows [4]. However, through the emergence of machine learning
and furthermore DL methods, nonparametric methods are now being used in traffic characteristics prediction to achieve higher
accuracy.

One of the first attempts to predict traffic characteristics has used deep belief networks (DBN) as an unsupervised feature
learner. [48, 49, 50] have implemented DBNs for traffic flow prediction. [51, 52] have used the same concept for predicting
travel time and traffic speed. Along with traffic data, weather data has been fed into DBNs using data fusion techniques to
predict traffic flow more accurately [53].

However, due to the nature of the above mentioned traffic features and their dependency on past traffic conditions, several
studies have been done to discover correlations using RNN to predict traffic characteristics. For instance, [54] have used a
gated RNN unit to predict traffic flow with respect to the weather conditions, where [55] have used LSTM to overcome the
same challenge. [56, 57] have used LSTM to predict travel time as well as traffic flow, while also taking into account weather
conditions. Finally, [58] have implemented a combination of deep RBM and RNN to predict congestion in transportation
network links.

[59] have tried to increase the AC of traffic flow prediction especially for nonrecurrent traffic congestion, such as a special
event or harsh weather, by paying more attention to the spatiotemporal feature of traffic. This feature is grounded in the
assumption that to predict any traffic characteristic, we need both the historical data on that particular location and current
traffic in the neighboring areas. To accomplish this, [60] have tried to combine an RNN with a CNN to pay attention to
both the temporal and spatial aspects of traffic. [61, 62, 63] have combined the power of LSTM + CNN to understand both
temporal and local dependencies to predict different traffic characteristics. [64] have considered two challenges, the first
being the dynamic dependency of traffic on temporal features, that is, in different hours of the day, this dependency may differ
from one direction of traffic flow to another direction. The second challenge has been the probability of shifting time periods
in relation to traffic density. In other words, a periodic temporal dependency may shift from one time to another (e.g., on
different days of the week). As a result [64] designed a network consisting of a flow-gated local CNN network to capture the
dynamic of the spatial dependencies and an LSTM network as a periodically shifted attention mechanism for handling the
periodic dependencies. One other approach to accounting for both types of dependencies was taken by [65]. They converted
data into images representing the two dimensions of time and space. By converting their data matrices into images, they were
able to use a CNN model to extract image features and predict the network-wide traffic speed. [66] improved this approach
later by adding a temporal gated convolution layer to extract temporal features.

To extract both spatial and temporal features, [67] have used a deep model called the stacked bidirectional and unidirec-
tional LSTM (SBU-LSTM) model where the bidirectional LSTM considers both the backward and forward dependencies in
time-series data. Since traffic conditions have periodicity, by analyzing both backward and forward features, the AC can be
increased.

One of the other models able to consider the spatiotemporal property of traffic has been AE, which was proposed first by
[68] and improved by [69] using denoising Stacked AE (dSAE) and [47] by combining LSTM and AE to predict traffic con-
ditions at peak hours and in post-accident situations. To predict post-accident situations, they extracted a latent representation



of the static features that are common in all accidents from stacks of AE and combined this with a temporal correlation to
traffic flow that came from stacks of LSTM, using a linear regression (LR) layer.

Table 1 summarizes all these papers, with the columns from left to right describing for each study the traffic characteristics
investigated and its DL model, dataset, experiment results (best results achieved), baseline model and the baseline model’s
best results, prediction window length, hyperlink to the given paper and its year of publication.

To the best of the authors’ knowledge, all studies matching the meta-analysis criteria described in section 2 of the current
paper related to travel time, traffic speed, traffic flow, traffic conditions, and traffic density have been tabulated here. For traffic
conditions, the goal was to predict if the road is congested or not. Results performed on multiple datasets are also represented
in Table 1. To have uniformity, the best results are those achieved when the window length is S’ (Short-term). This table
structure is followed across all tables in this paper.

Table 1: Overview of papers using deep learning techniques for traffic characteristic prediction.

Characteristic Model Dataset Experiment Results Baseline Model Results Length  Paper  Year
MAPE%| Others MAPE%| Others Model

Travel time AE Simulated data 5.79 M [70] 2015
DBN PeMS 3.00 S.M,L [51] 2017
LSTM+DNN PeMS 0.961 1.006 Ridge Reg. S [56] 2018
LSTM St.Louis transport net 7.09 9.8 Instantanious L [52] 2018

travel time

Traffic speed DBN Beijing Arterial 5.809 5.968 BP-NN S.M [55] 2016
eRCNN Beijing Ring 0.19 0.21 CNN N [60] 2017
CNN Beijing Ring AC:93.21% AC:91.7% OLS N [65] 2017
SBU+LSTM INRIX 5.674 6.3 Random S [67] 2018

Forest(RF)

DLSTM G42 toll data 10.8 N [71] 2019
Bi-LSTM AVI, Xuancheng MSE:7.32 MSE:10.51 LSTM NN S\M [72] 2019
CNN+LSTM Rozelle road segment RMSE:4.46(km/h) RMSE:4.48 LSTM S\M [73] 2019
CNN Traffic Centre, Seoul RMSE:2.48(km/h) RMSE:2.75 LSTM SM,L [74] 2019
LSTM+GRU RTMS, Beijing 5.85 8.61 LSTM L [75] 2019
GCN Beijing Ring 9.57 10.25 LSTM S [76] 2019

Traffic flow DBN PeMS EESH AC:90% AC:86% NN S.M,L [49] 2014
SAE PeMS 6.75 7.4 RBF NN S.M,L [68] 2015
LSTM PeMS 6.49 7.63 SAE SM,L [57] 2015
DBN PeMS RMSE:0.06(V/15min) RMSE:0.063 | ANN L [53] 2016
DSAE PeMS 232 23.7 NN L [69] 2016
LSTM+DBN Beijing Ring 11.69 12.84 LSTM SM [77] 2017
LSTM+SAE PeMS 5 10 Random Walk S.M,L [47] 2017
CNN PeMS RMSE:0.0061 L [61] 2017
LSTM Beijing Arterial 6.05 6.32 SAE SM,L [78] 2017
RNN+CNN PeMS RMSE:0.028(V/5min) RMSE:0.030 | LSTM L [62] 2018
DBN Visum Simulator 8.75 9.39 ARIMA-PSO S.L [63] 2018
ConvLSTM Beijing Traffic RMSE:6.95(km/h) RMSE:7.359 | LSTM L [79] 2018
DNN PeMS RMSE:27.91(V/5min) RMSE:29.84 | DeepST M [80] 2018
CNN Washington Interstate RMSE:5.5(V/5min) RMSE:15 DSAE L [81] 2018
DBN PeMS 3.19 5.32 SAE S.M,L [82] 2018
CNN BJER4+PeMS 9.11 9.31 Graph GRU S.M [83] 2018
LSTM+CNN NY Bike/Car 16.3 17.36 DMVST-Net M [64] 2018
LSTM+CNN INRIX data Seattle 3.28 3.74 SGC-LSTM L [84] 2018
LSTM AIMSUN intersection RMSE:7.931(V.sec) RMSE:8.586 | Kalman Filter L [85] 2018
CNN NGSIM 3.84 8.56 SVR S [50] 2019
CNN PeMS 0.105 0.124 GCNN S.M [86] 2019
DNN Alberta Intersections R-squared:0.89 [87] 2019
GAN PeMS 36.91 37.63 SAE S [88] 2019
SAE Beijing Roads RMSE:18.30 RMSE:20.8 LSTM N [89] 2019
SAE+DNN Beijing Car 12 15 BPNN S [90] 2019

Traffic Con- RBM+RNN Ningbo, China AC:88.2% AC:71% SVM L [58] 2015

ditions
CNN VPRs Jinan, China RMSE:0.241 RMSE:0.285 | LSTM S.M,L [91] 2018
DLN+CNN Motorway dataset,UK AC:89% AC:70.5% AE [92] 2018
YOLO IOWA DOT CCTV AC:91.4% AC:85.7% SVM [93] 2018
DBN+SVR PEK airport data RMSE:12.65(min) RMSE:16.01 | KNN [66] 2019
CNN-+RNN Taxi-Schenzan data AC:97.59% AC:77.92% GRU N [94] 2019

Traffic den- CNN Seoul Intersection RMSE:4.15(car RMSE:7.109 | Crowd CNN [95] 2018

sity count)
CNN Traffic Simulator 3.68 9.34 ARIMA S [50] 2019

4.3. Traffic incidents inference

The goals of predicting traffic incident risk for a given location as well as incident detection based on traffic features are to
help traffic management agencies to reduce incident risk in a hazardous area and traffic jams in incident locations. Although
there are parameters such as drivers’ behavior, that are not very predictable, there are several key features that can help predict
traffic incidents.



Table 2: Overview of papers using deep learning techniques for traffic incident inference.

Characteristic Model Dataset Experiment Results Baseline Results Paper Year
RMSE | Others RMSE | Others Model

Incident risk SJdAE 7 month heterogeneous data 1 141 Logistic Regr. [96] 2016
LSTM Accident records(Beijing) 0.63 0.75 SAdAE [97] 2017

LSTM NYPD 9.44 10.46 CNN [98] 2019

DNN Accident records(VTTI) AC:85% AC:69% Decision Tree(DT) [99] 2019

DBN Civil Aviation Data MSE:0.2 MSE:0.05 SVR [100] 2019

Traffic incident prediction DNN Accident records(IOWA) AC:95.12% AC:89.58% RF [101] 2017
DBN Highways dataset 1.48 1.60 Bayesian ANN [102] 2017

AE TRIMS and PMS MAE:0.150 MAE:0.660 SVM [103] 2018

LSTM Accident records(IOWA) 0.078 0.121 7 year Avg. [104] 2018

Collision prediction DNN Internet of vehicles [105] 2018
DBN Collision Data, Ontario 15.24 16.51 Bayesian NN [106] 2018

LSTM Annotated data mAP:62.1% mAP:57.8% RNN [107] 2018

DNN Attica Tollway AC:68.95% AC:72.15% DT [108] 2019

Incident detection SAE SUMO MSE:0.13 MSE:0.18 DNN [109] 2018
DBN NYC+NOVA Accidents AC:85% AC:79% SVM [110] 2018

Incident severity prediction =~ LSTM Accident records(Malaysia) AC:71.77% AC:70.30% Bayesian LR [111] 2017
DNN Accident records(AbuDhabi) AC:74.6% AC:59.5% Ordered Probit [112] 2017

CNN Accident records(Louisiana) 0.231 [113] 2018

Human mobility [96], traffic flow, geographical position, weather, time period and day of the week [97] are some of
these features that can be investigated as indicators of a traffic incident. However, a single model cannot generally be used
in different places because accident factors in metropolitan areas, where the population and vehicles are generally dense, are
completely different from accident factors in a small town with a scattered population [101]. The prediction and detection of
an incident is more challenging than the prediction of incident risk since data for the former are usually heterogeneous (i.e,
traffic incidents happen rarely, compared to the amount of data for the cases where there is no incident). To overcome this
issue, [101] in each step changed only one feature of the data (hour, day, or location) and then checked if the resulting data
point was negative or not. In negative cases, it was added to the pool of data to be considered.

To measure the traffic incident risk based on surveillance camera data, different approaches have been used. For example,
[96] have used a stack denoising AE (SDAE) to learn the hierarchical features of human mobility and their correlation with a
traffic incident. In contrast, [97, 98] have implemented an LSTM model to evaluate risk, but [97] achieved better performance
due to learning from more features.

To predict traffic incidents in a macroscopic manner, [101, 102] have tried implementing DNN models, [101] by consid-
ering the curvature of the road as well as the number of intersections and density of the area in order to overcome the spatial
heterogeneity problem. For the same concern, [103] have used AE by considering both continuous and categorical variables,
and [104] have used a Conv-LSTM that breaks regions into smaller regions in order to overcome spatial heterogeneity.

If, following [104], we consider the macroscopic prediction of traffic incidents as not focused on any single vehicle, but
instead as predicting the probability of an accident between any pair of vehicles in the wider region, microscopic incident
prediction studies can also be introduced that—by getting data about the location, speed and direction of each vehicle in the
surrounding area—predict the probability of an incident in the near future between any certain pair of vehicles. In this regard,
[105, 108] have trained a DNN to predict likely collisions. [108] have used a simple NN with 4 layers, which, though it does
not compare well with the baseline results of machine learning (ML) techniques, is still preferred, as the ML techniques have
poor sensitivities.

[107] have annotated their large dataset of near-miss traffic accidents to train a quasi-RNN model. The innovation of their
work was introducing an adaptive loss function for early anticipation (AdaLEA), which gives their model the ability to predict
a collision 3.65 seconds before it happens.

Another challenge in traffic incident inferencing is detecting an accident by processing only raw data. To address this,
[109, 114] have used a stacked AE (SAE) to extract the features of traffic patterns in the context of an accident. Also, [109]
have used a fuzzy DNN to control the learning of traffic-incident-related parameters. [110] have trained their DBN model
on a dataset that includes tweets related to traffic accidents, showing that non-traffic features can be used along with traffic
feature data to validate traffic incident detection.

Incident severity prediction based on recorded incident features have been studied in [111, 112, 60]. The artificial neural
network (ANN) trained in [112] has shown an improvement in baseline performance as compared to the LSTM model with
fully connected layers in [111].

Table 2 summarizes all these papers, shows their model, the dataset which their model was trained on, evaluation of their
model for their testing dataset as well as comparison of their model’s performance to that of their baseline model. In the first
section of this table, different studies regarding parameters effective in predicting increased incident risk and the manner in
which incident risk is affected are listed. In the next section, macroscopic studies on incident prediction are categorized as
“traffic incident prediction,” whereas microscopic studies are categorized as “collision prediction.” In the incident detection



section, all studies focused on detecting incidents by analyzing raw traffic data have been gathered and, finally, in the last
section, investigations predicting the severity of the incident are listed.

4.4. Vehicle identification

Applications of re-identification (Re-ID) vary from calculating travel time to automatic ticketing. Since license plates are
unique to each vehicle, the first task in Re-ID is recognizing them.

[115, 116] have implemented DL models to recognize license plates by using a visual attention model that first generates
a feature map using a combination of the most commonly used colors in license plates, extracts data from plates using a
CNN model, and ultimately runs an SVM on the extracted data. However, bad lighting, blurriness due to vehicle movement,
low camera quality and even traffic occlusion where the plate is covered behind other cars can make reading license plate
characters impossible. To overcome this, [117] have proposed a CNN layer to extract conspicuous features such as the color
and model of the vehicle and have used a Siamese neural network to distinguish similar plates. (This network has been used
before in signature verification tasks.) Note that for some feature extractions, such as vehicle color recognition, solutions like
what [118] did using a combination of CNN for feature extraction and SVM for categorizing are also available. [119] have
similarly used a histogram-based adaptive appearance model like what [120] did for target re-identification, detecting and
saving other features of each car besides the scheme of the license plate to do Re-ID. Also, [121] have used faster RCNN to
detect vehicles in images. In addition, a modified version of the Single Shot Detection (SSD) method to localize and classify
the different types of construction equipment by employing MobileNet as the feature extraction network has been done by
[122]. [123] has worked on the same idea but trained their model based more on spatiotemporal data, pruning their results
with the fact that 1) a vehicle cannot be in two places at one time and 2) a vehicle that has already passed a section is unlikely
to pass it again. However, their model could not compete with the model defined in [119], that proposed a Markov chain
random fields to prepare several queries based on a visual spatiotemporal path and then used a combined Siamese-CNN and
path-LSTM model.

Table 3 summarizes all these papers, show their models, the dataset which model is trained on and their performances on
those dataset and comparison to the baseline model.

Table 3: Overview of papers using deep learning techniques for vehicle id tasks.

Characteristic Model Dataset Experiment Results Baseline Results Paper  Year
AC% Others AC% Others Model
License plate  SIFT+SVM Chinese license plate PR:98.6 PR:98.4 CNN+SVM [115] 2015
recognition
CNN On road data 99 [124] 2017
CNN Bangla license plate 92 [116] 2018
Kernel-CNN Chinese license data 96.38 93.35 SVM-RBF Kernel [125] 2018
CNN Thailand license plate 96.94 [126] 2018
CNN AOLP PR:99.5 PR:90.7 Single shot detector [127] 2018
Vehicle type CNN Generated dataset 99.07 [128] 2015
classification
CNN BIT-vehicle dataset 96.1 93.7 SVM [129] 2015
Faster RCNN Vehicle dataset 89 [121] 2017
CNN VEDAI/Munich dataset 54.6/73.7 32/53.9 Fast RCNN [130] 2017
CNN ILSVRC2012 98.29 83.78 Ensemble classifiers | [131] 2017
CNN Towa CCTV data PR:95 [132] 2017
Deep CNN CarFlag/CompCars 98.67/99.3 90.34/93.58 [133] 2017
Deep CNN XMUPlus 99.10 99.07 Pretrained CNN [134] 2018
Deep CNN MIT-CBCL/Caltech 94.12/95.04 93.71/94.27 RCNN [135] 2018
CNN COSMO-SkyMed 97.66 95.48 CNN [136] 2018
CNN CompCars 54.56 42 Pre-trained CNN [137] 2018
Faster ILSVRC-2012 mAP:89.93% mAP:89.12% | Faster RCNN [138] 2018
RCNN+RPN
LSTM Fleetmatics data, US 85 [139] 2018
D-CNN CompCars Top 5:0.922 Top 5:0.917 CNN [140] 2018
Fast RCNN+RPN  MIT/CALTECH dataset 84.4 84 Fast RCNN [141] 2018
Deep-CNN+AE Chengdu expressways 97.62 95.18 CNN [142] 2018
CNN LabelMe/BIT datasets 98.95/95.12 [143] 2019
PCA-CNN PLUS Malaysia NSE 99.51 98.65 Ensemble Classifier [144] 2019
RE ID CNN+SNN VeRi-776 mAP:27.77% mAP:18.49% | CNN [117] 2016
MRF+SNN+LSTM  VeRi-776 mAP:58.27% mAP:46.25% | LSTM+CNN [145] 2017
CNN VOT2016 54 54 CNN [146] 2017
CNN Al City Challenge PR:99.25 [119] 2018
CNN+AFL VeRi Al City Challenge mAP:57.43% mAP:58.27% | CNN [123] 2018
CNN AI City Challenge PR:99.25 [147] 2018
RNN Brisbane vehicle data PR:37.5 [148] 2018
Faster RCNN Korea Highways MAPE:3.4% MAPE:4.9% | SSD [149] 2019
Vehicle color CNN SVM Vehicle Color Dataset 93.78 91.89 SVM [118] 2015
recognition
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4.5. Traffic signal timing

One of the main tasks of ITS management based on multiple types of data is controlling traffic via traffic signal lights. For
several years, research on optimizing signal light timing to have the best performance has been one of the greatest challenges
in the transportation field. The results of studies in this area have endowed traffic agencies with analytical models that use
mathematical methods to address this optimization problem. However, through emerging DL studies, modeling the dynamics
of traffic to achieve the best performance has taken a new path. This is because the nature of RL has facilitated its application
in different studies to find the best traffic signal timing.

[150] has used DRL to tackle traffic light timing. In DRL, a DL model is usually used to implement the Q-function in
a complex system to capture the dynamics of traffic flow. A dSAE network is used to take the state as input and give the
Q-function for any possible action as the output of the network. [150] has shown a 14% reduction in cumulative delay in the
case of using an SAE to predict the Q-function instead of conventional prediction.

[151] has suggested an alternative novel idea for choosing RL states. They argue that instead of taking raw data as the
state, it could be more effective if the CNN extracts important features from the raw data—e.g., the position of the cars and
their speeds—and feeds it to a DRL network with a fully connected network to predict the Q-value for each of 4 states of
green, yellow, red and protected left turn light, considering cumulative staying time as the reward. They have also used the
experience replay and target network techniques to stabilize the algorithm and converge it to the optimal policy as suggested
in [27].

[152] have also used CNN to map states. They use several state-of-the-art techniques such as the target network, experi-
ence replay, double Q-learning network and dueling network methods to increase the performance of the network and make
it stable. Their results have shown a great reduction in waiting time (more than 30%) for a fixed-time scenario.

[153] have investigated the importance of choosing delay time states. The main goal of this study was investigating
whether the data from conventional sensors, such as occupancy and average speed, are satisfactory or more precise data are
needed, such as vehicle density and queue length, or even data with the highest resolution, such as discretizing each incoming
lane into cells and considering the presence of a vehicle in each cell separately. The results of this study showed that using
high resolution data is not substantially effective and conventional data are good enough for their model. However, one of the
reasons that may have contributed to this conclusion is that they used a simple fully connected model that could not extract
deep features from more precise states very well.

Finally, [154] have tested their model on real-world traffic data to see how effective its results could be. They suggest that
instead of only studying the reward, we need to consider different policies that may result in the same reward and then take
the most feasible one. The final results of this study have shown great performance in reducing queue length, delay time and
duration compared with other methods.

Table 4 summarizes all these papers, shows their model, the dataset which their model was trained on, and the performance
of their model for the testing dataset as well as comparison of their model’s performance to that of the baseline model.

Table 4: Overview of papers using deep learning techniques for traffic signal timing.

Paper  Year Model Dataset State Reward Actions

[150] 2016 SAE+DRL PARAMICS  queue length —Queue length difference— 2

[155] 2016 DQN SUMO position, speed number of Stop switch and delay 2

[151] 2017 CNN+DRL SUMO F(position, Speed) (cumulative staying time) 4

[152] 2017 CNN+DRL SUMO position, speed (cumulative waiting time) 8

[156] 2017 DQN SUMO snapshot of the current state of a graphical view of  difference between the total cumulative delays of 2
the intersection two consecutive actions

[153] 2018 DRL SUMO occupancy and speed/vehicle density and queue  change in cumulative delay 4
length/presence of vehicles in each lane

[154] 2018 DRL China queue length, number of vehicles, updated waiting ~ F(queue length, delay, updated waiting time, light 2
time, current phase, next phase and an image of the  switches indicator, number of vehicles pass the in-
intersection analyzed by CNN tersection, travel time)

[157] 2018 DQN VISSIM current phase, green and red duration, remaining cars system delay 8
and left turn bay occupation

[158] 2018 DRL VISSIM queue length, signal state, and time of day Discharged vehicle 2

[159] 2019 3DQN SUMO the position and speed of vehicles change of the cumulative waiting time between two 8

neighboring cycles
[160] 2019 3DQN Simulated current traffic state and current signal phase difference between the current and previous wait- 4
traffic ing times of all vehicles
[161] 2019 DQN SUMO number of input and output vehicles of adjucents in- summation of que length in multiple intersections 4

tersections

4.6. Ride sharing and public transportation

Public transportation systems (including bus or metro systems, taxis, etc.) are one of the main means of moving passen-

gers within cities. To increase city planning performance and also passenger satisfaction, the nature of DNN has endowed
companies with increasingly optimal routing maps that take into account data such as passenger demand for a given mode of
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travel at particular places and times. DL has been adopted to make predictions even more accurate compared to existing ML
techniques.

[162] have investigated the performance of several ML techniques and a fully connected DL model with only 2 hidden
layers and have shown that their very simple DL model outperforms almost all other techniques except a boosted decision
tree. Besides the simple DNN models in [163, 164, 165, 166], a hybrid model containing a stacked AE and a DNN has been
implemented by [167] to predict hourly passenger flow.

To capture all related features such as the spatial, temporal and exogenous features impacting passenger demand, a fusion
convolutional LSTM network (FCL-Net [168]) has been proposed. This network includes stacked Conv-LSTM layers to
analyze spatiotemporal variables, such as historical demand intensity and travel time, and LSTM layers to evaluate nonspatial
time-series variables, such as weather, day of the week and time of day. With the same idea, [169] has proposed a spatiotem-
poral Resnet (ST-Resnet) which includes several convolutional layers. [170] has implemented both of these techniques on a
New York City taxi record dataset and their comparison has shown that better performance with a faster training time can
be achieved using ST-Resnet. The authors suggest two reasons for this. First, LSTM captures fine temporal dependencies
which are not as fundamental as the coarse-grained dependencies from the convolutional layers. Their second explanation
is that spatial features may be more important than temporal ones and since the ST-Resnet focuses more on spatial features,
it outperforms the FCL-Net. [120, 171] work directly on graphs structures to leverage structural information by considering
the nodes as stations and the edges as dependencies among stations. Finally, [172, 173] have proposed a deep multiview
spatiotemporal network to capture all dependencies separately.

Another research area related to public transportation deals with travel mode selection. [174] has implemented a simple
fully connected DNN on Swiss Metro data to reveal demand based on mode. Another issue for transportation network
companies is route scheduling for their drivers to pick up passengers in order to minimize passenger waiting time as well
as cost for the driver and company. [175] has suggested a DRL model aiming to give drivers the best route. This paper
considers different factors such as the current location of vehicles, time of day, and competition between drivers, resulting in
a significantly shorter search time and more long-term revenue for drivers.

Table 5 summarizes all these papers, shows their model, the dataset which their model was trained on, and evaluation of
their model for their testing dataset as well as comparison of their model’s performance to that of their baseline model. (In
this table, “travel mode” refers to studies which tried to predict the mode of transportation that passengers would choose at
each time point. Also, “passenger flow” is defined as the number of passengers flowing in or out of a given location at a
certain time point.)

Table 5: Overview of papers using deep learning techniques for ride sharing and public transportation.

Characteristic Model Dataset Experiment Results Baseline Results Paper  Year
RMSE Others RMSE Others
Travel mode DNN Swiss Metro dataset AC:66.1% AC:65.57% ANN [174] 2017
CNN GPS - GeoLife project AC:84.8% AC:78.1% RF [176] 2018
Route scheduling DRL Didi Chuxing [175] 2019
Passenger flow SAE+DNN Xiamen bus station 50.4 514 SVM [167] 2017
CNN Passenger data AC:96% [163] 2017
CNN AFC, Seoul AC:60.10% AC:54.83% Statistics [164] 2017
DNN Unity-3D environment [165] 2018
DNN Shanghai rail transit MSRE:0.00000125 MSRE:0.00178 | Lin. Regr. [166] 2018
CNN California HTS AC:93.59% AC:69.76% RF [177] 2018
LSTM Nanjing Metro System 8.19 11.54 ARIMA [178] 2019
AE+LSTM Singapores Metro Sys- | 20.37 24.82 LSTM [179] 2019
tem
Passenger demand ~ ConvLSTM Didi Chuxing 0.016 0.0175 CNN [168] 2017
prediction
CNN Beijing taxi/NY bike 16.69/6.33 18.18/7.43 DNN [169] 2017
DNN Didi Chuxing 20.09 16.41 DT [162] 2017
CNN+LSTM Didi Chuxing 9.642 10.012 XGBoost [172] 2018
GCNN-DDGF Citi Bike data, NY 2.12 2.43 XGBoost [171] 2018
LSTM TAZ Nanjing,China MAPE:46.49% MAPE:65.128% | XGBoost [180] 2018
CNN+RNN Porto Taxi Trajectory AC:78.80% AC:75.62% CNN [181] 2018
DQN London travel data Waiting time:158.2 [182] 2018
CNN Citi Bike System, NY 18.995 19.784 NN [183] 2018
DNN NYC taxi data 11.13 16.05 LSBoost [170] 2018
CNN+LSTM Beijing metro 75 8.89 LSTM [173] 2019
GCN Seouls Bike data 2.26 245 LSTM [184] 2019

4.7. Visual recognition tasks

One of the most significant applications of DL is the use of nonintrusive recognition and detection systems, such as
camera-image-based systems. These applications can vary from providing a suitable roadway infrastructure for driving vehi-
cles to endowing the autonomous vehicles with a safe and reliable driving strategy.
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One of the first visual recognition challenges tackled has been obstacle detection via exploiting vehicle sensors. To
do this, a variety of networks with unique architectures have been implemented. [185] have merged data from an RGB
camera and LIDAR sensors to increase obstacle detection performance in different illumination conditions. [186, 187], on the
other hand, have confronted obstacle detection as an anomaly detection problem. They have used a hybrid encoder model to
extract features of Deep Boltzmann Machine (DBM) and then an autoencoder to reduce the dimensionality and obtain vertical
disparity (V-disparity) map coordinate system data from images. The key feature of V-disparity data is that these data are
mostly stable with small variations from noise and they change drastically only if an obstacle appears in an image.

[188, 189] have used data from far-infrared sensors to improve vehicle detection at night. While the former used only far-
infrared data, the latter, in order to decrease the false positive percentage used both camera and far-infrared data. [190] have
tried to address requirements in regard to vehicle following, which include detecting brake lights. They used the Histogram of
Oriented Gradient (HOG) approach implemented with LIDAR and camera data. To decrease the false positive rate and speed
up the process, they also used the vanishing point technique. Next, they used AlexNet to detect if the rear middle brake light
was on or off.

Another important task in navigating safely is traffic sign detection. These signs obligate, prohibit or alert drivers. One
of the most common DL models to detect traffic signs are CNNs. [191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,
202, 203] have all used CNN as their main feature extractor, each trying to tune their model to get the best results. [191] have
used RCNN to derive regions of interest from RGB images. [194] have focused on low-illumination images. They used a
classifier to detect regions of interest and an SVM to verify if any traffic signs were present inside the region or not. Then, a
CNN model using the Byte-MCT technique classified the traffic sign. Experiments have shown that this method is robust in
deficient lighting, outperforming other methods in cases of low illumination.

[195] have suggested that the RGB space cannot provide as much useful data as the perceptual lab color space. Therefore,
after space changing, they extracted the deep perceptual features using a CNN and fed these features to a kernel-based ELM
classifier to identify the traffic sign. This classifier used the radial basis function to map the features in a higher dimension
space in order to disconnect features to get the best outcome.

[198] have tried different optimization methods on a CNN model containing several convolutional layers and spatial
transformer networks (STN) that make the CNN spatially independent, resulting in no need for supervised training, data aug-
mentation or even normalization. In contrast, [204], instead of using a CNN, have used a DBM that is boosted with canonical
correlation analysis for feature extraction and then an SVM for classification. Also, they have used certain conventional
image-processing techniques such as image drizzling and gray-scale normalization to reduce noise.

[205, 206, 207] have focused more on traffic light detection and classification. This has a very significant role in managing
traffic, and correct detection has a high correlation to reduced risk. [205] have proposed their Deep Traffic Light Recognition
(DeepTLR) model that first classifies each fine-grained pixel of the input data, calculating the probability for each class.
Then, for the regions with higher probability toward the presence of a traffic light, a CNN was used to classify the status of
the traffic light. (In this model, temporal data was not used and each frame was analyzed separately.) However, [206] have
used traffic speed information as well as stereovision data to track detected traffic lights. [193] have used a combination of
region-of-interest (ROI) performance, CNN feature extraction and an SVM as a classifier to detect arrow signs on the roadway
and classify their direction. [208] have used a CNN to detect lane position in the road.

Finally, the monitoring of civil infrastructure has always been a focus for engineers and researchers. Various monitoring
techniques have been used for infrastructure performance evaluation, ranging from conventional short-term [209] and long-
term [210, 211, 212] sensor-based monitoring to nondestructive and noncontact techniques [213]. Among the applications
of nondestructive damage detection, pavement crack detection, in particular, has received attention, due to its importance in
civil infrastructure management. For instance, [214] have proposed a unified pavement crack detection approach that can
distinguish between cracks, sealed cracks, and background regions. Through their approach, they have been able to effec-
tively separate different cracks having similar intensity and width. Moreover, [215] have proposed pixel-level pavement crack
detection in black-box images using an encoder-decoder network and found that ResNet-152 with transfer learning outper-
formed other networks. Additionally, CrackNet, which performs pixel-level pavement crack detection on laser-based 3D
asphalt images, was introduced by [216]. In a separate study, [216] extended their previous study to CrackNet-R, which uti-
lizes RNN with a gated recurrent multilayer perceptron (GRMLP) to update the memory of the network, showing their model
outperforms other models based on LSTM and GRU. Also, [217] have investigated pavement crack detection performance
using metaheuristic-optimized Canny and Sobel edge detection algorithms, comparing these algorithms with their proposed
CNN and confirming the superior performance of DL over conventional edge detection models.

Table 6 summarizes all these papers, shows their model, the dataset which their model was trained on, and evaluation of
their model for their testing dataset as well as comparison of their model’s performance to that of the baseline model.
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Table 6: Overview of papers using deep learning techniques for visual recognition tasks.

Characteristic Model Dataset Experiment Results Baseline Results Paper  Year
AC% Others AC% Others Model
Obstacle Detection Fast RCNN KITTI PR:88.99 PR:88.01 CaffeNet [185] 2016
AE CNN CCD Stereo data 98.15 96.14 RCNN [218] 2016
CNN Caltech Pedestrian Missrate:54% Missrate:69 HOG+SVM [219] 2017
SAAE+KNN Bahnhof data 91 81 DBN [186] 2018
AE+SVM Malaga, Daimler data 93.08 89.53 SVM [187] 2018
CNN Video data PR:95 PR:90 CNN [220] 2018
CNN Video data 96.8 [221] 2018
CNN GMVRT/ UCF-ARG 99.71 92.36 HOG+SVM [222] 2018
CNN Railway video data mAP:89.53% mAP:88.61% SSD [223] 2018
CNN Caltech data Missrate:42.27 Missrate:60.95 | MS-CNN [224] 2018
CNN FCTD Camera PR:90.81 PR:70.61 SSD [225] 2019
DNN Video data 98 [226] 2019
Vehicle detection DBN Far Infrared images RL:93.9 RL:91.4 SVM [188] 2016
DBN Far Infrared images RL:92.3 RL:91.8 DBN [189] 2016
CNN Built from videos Recognition  rate: [227] 2017
94.68
HRPN+Boost  Munich vehicle PR:89.2 PR:86.2 HRPN [228] 2017
Classifiers dataset
Deep CNN Recorded vehicle data Top 5:97.51% [229] 2017
DNN LISA 2010 PR:81.10 PR:77.09 Faster RCNN [230] 2018
DBN RNN KITTI 95.36 92.82 Encoded SVM [231] 2018
Scale- KITTI 89.60 89.02 MS-CNN [232] 2018
Insensitive
CNN
CNN Video data 90.7 90.4 CNN(Resnet) [233] 2019
Traffic sign recognition DBN GTSRB 96.68 95.16 HOG [204] 2016
HOG+DBM GTSDB 96.68 95.16 HOG [192] 2016
CNN+SVM Built from videos 71.87 [193] 2016
CNN+SVM Korea daylight PR:99.03 PR:73.49 CNN [194] 2017
CNN+KELM  GTSRB 99.54 99.65 Ensemble CNN [195] 2017
CNN GTSDB 99.4 77.3 HOG [234] 2017
Fast BCNN GTSRB 99.01 99.12 BCNN [196] 2017
CNN MASTIF 97.78 98.97 R-LSTM [197] 2017
CNN+STN GTSRB 99.71 99.65 Ensemble CNN [198] 2018
CNN GTSRB 99.75 99.67 CNN [199] 2018
CNN SDTS PR:89.4 [200] 2018
CNN GTSDB PR:90.7 PR:84.20 HOG+SVM [201] 2019
CNN HDR PR:94.24 PR:89.33 Guassian Mix- | [202] 2019
ture
CNN GTSRB mAP:83.3% mAP:80.8% CNN [203] 2019
Traffic light recognition CNN LaRA data PR:96.9 PR:61.22% Image Proc. [205] 2016
CNN Bosch Traffic Lights 95.1 [206] 2017
Faster Bosch Traffic Lights mAP:20.40% [207] 2018
RCNN
Lane detection DNN Generated data Top 5:98.55% [208] 2016
CNN Caltech 99.35 97.21 Image Proc. [235] 2018
GBNN NGSIM 97.7 96.6 CNN [236] 2019
CNN 98.37 [237] 2019
Vehicle signal detection HOG CNN Built from videos 99 [190] 2016
FRCN+RPN+F SYSU data 95.58 94.61 FRCN+RPN [238] 2017
Road surface detection RNN+LSTM  Built from videos 94.6 [239] 2018
Deep CNN Cambridge 100 82.6 Faster RCNN [240] 2019
Street scene labelling S-CNN Camvid 53.2 47 4 FCN [241] 2018
Traffic scene segmentation ~ AE 78.8 76.4 SegNet [242] 2018
CNN+IAL Cityscape ToU:74.8 IoU:71.3 CNN [243] 2019
CNN+MFI Built from videos 91.7 81.1 CNN [244 2019
Crack detection CNN 3D pavement data 94.29 [245] 2017
CNN PaveVison3D data PR:90.20 PR:90.13 CrackNet [216] 2018
RCNN Cifar-10 data [246] 2018
Deep CNN Da Nang, Vietnam 92.08 81 DFP-Sobel [217] 2018
Deep CNN Captured Data PR:84.7 PR:51.5 RF [214] 2018
Deep CNN Railway data 97.8 [247] 2019
Deep CNN Generated data, Seoul PR:77.68 PR:25.14 SegNet [215] 2019
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Table 7: Detailed specifications of the popular edge computing devices used for DL.

Jetson Xavier Jetson TX2 Jetson Nano Raspberry Pi 3 B+ Intel NCS 2
GPU 512-core Volta GPU @ with NVIDIA Pascal, 256 CUDA 128-core Maxwell Broadcom VideoCore IV Intel® Movidius™
64 Tensor Cores cores Myriad™ X VPU
CPU Octal-core NVIDIA Carmel HMP Dual Denver 2/2 MB Quad-core ARM A57 @ 4% ARM Cortex-A53, N.A.
ARMVS8.2 CPU @ 2.26GHz L2 + Quad ARM® A57/2 1.43 GHz 1.2GHz
MB L2
Memory 16 GB 256 bit LPDDR4 8 GB 128 bit LPDDR4 59.7 4 GB 64-bit LPDDR4 25.6 1GB LPDDR?2 (900 MHz) N.A.
137GB/s GB/s GB/s
Display 3xeDP 1.4,DP 1.2, HDMI2.0  2x DSI, 2x DP 1.2, HDMI = HDMI 2.0, eDP 1.4 HDMI, DSI N.A.
2.0,eDP 1.4
Data storage 32GB eMMC 5.1 32 GB eMMC, SDIO, SATA microSD microSD N.A.
USB USB C USB 3, USB 2 USB 3, USB 2 USB 2 N.A.
Connectivity 1 Gigabit Ethernet 1 Gigabit Ethernet, 802.11ac ~ Gigabit Ethernet 100 Base Ethernet, 24GHz  USB 3
WLAN, Bluetooth 802.11n wireless
Mechanical 105 mm x 105 mm 50 mm x 87 mm 100 mm x 80 mm 56.5 mm x 85.60 mm 72.5 mm x 27 mm
Power 10 W, 15W,30 W T5W 5-10W 5W 1w
Price 1299 USD 599 USD 99 USD 35 USD 99 USD

e

Figure 4: Hardware: NVIDIA Jetson Xavier, NVIDIA Jetson TX2, NVIDIA Jetson Nano, Raspberry, Intel NCS 2

5. Discussion and Conclusion

5.1. Hardware

Generally, there are two types of intelligent decision-making, namely cloud-computing-based and edge-computing-based.
While computing services are delivered over the internet via the cloud computing approach, they are performed at the edge
of the network via the edge computing approach. The edge computing approach has introduced several advantages, such
as efficient and fast intelligent decision-making as well as decreased data transfer cost. Emerging technologies such as DL
have significantly increased the importance of edge computing devices. Though discussing edge computing devices in detail
goes beyond the scope of this paper, we briefly overview and compare the edge computing devices popularly used for DL.
Figure 5.1 illustrates the various edge computing platforms discussed in this section. Also, Table 7 summarizes the technical
specifications of the covered hardware.

The Jetson Xavier is the high-end system-on-a-chip (SoC) computing unit in the Jetson family, which exploits the Volta
GPU. An integrated GPU with Tensor Cores and dual Deep Learning Accelerators (DLAs) make this module ideal to deploy
computationally extensive DL based solutions. NVIDIA Jetson Xavier is capable of providing 32 TeraOPS of computing
performance with a configurable power consumption of 10, 15 or 30W.

Another widely used embedded SoC is NVIDIA Jetson TX2 which takes advantage of NVIDIA Pascal GPU. Although it
delivers less computing performance than NVIDIA Xavier, it can be a reliable edge computing device for certain applications.
The module can provide more than 1TFLOPS of FP16 computing performance using less than 7.5W of power consumption.
The Jetson Nano, which utilizes the Maxwell GPU, is newest product from the Jetson family introduced by NVIDIA. It is
suitable for deploying computer vision and other DL. models and can deliver 472 GFLOPS of FP16 computing performance
with 5-10W of power consumption.

Another family of edge computing devices is the Raspberry Pi family, which introduces affordable SoCs capable of high
performance in basic computer tasks. The Raspberry Pi3 Model B+ is the latest version of the Raspberry Pi which uses
a 1.4GHz 64-bit quad-core processor and can be used alongside deep learning accelerators to achieve high performance in
computationally expensive tasks.

Finally, the Intel Neural Computing Stick 2 (NCS 2) is a USB-sized fanless unit, which utilizes the Myriad X Vision
Processing Unit (VPU) that is capable of accelerating computationally intensive inference on the edge. Very low power
consumption along with supporting popular DL frameworks such as Tensorflow and Caffe have made the NCS 2 ideal to
use with resource-restricted platforms such as Raspberry Pi3 B+. There have been limited studies investigating the inference
speed of these hardware, though [122] has compared the inference speed of an SSD-MobileNet model of the abovementioned
embedded devices on a construction vehicle dataset. Utilizing the Jetson TX?2, they achieved 47 FPS, and utilizing a Raspberry
Pi and NCS combination, they achieved 8 FPS.
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5.2. Summary

Below, we provide a summary of the studies cited in the current paper. We have classified these studies according to our
six ITS application categories in relation to the DL models they use 5. The following are our observations

e Traffic Characteristics: CNN, RNN, and CNN-RNN hybrid models are most frequently used. The main reason is
undoubtedly related to the nature of traffic that has two main dependencies: spatial and temporal. Because various
datasets and performance evaluation metrics have been used, it is hard to compare different studies related to traffic
characteristics, but in traffic flow studies, the PeMS dataset has been widely used. The majority of research has used
hybrid CNN and RNN models, which can identify both long temporal dependencies and local trend features. Although
most papers have defined their own CNN model rather than using an existing architecture, CNN has generally shown
better performance across papers when compared to RNN, which shows lower computation/training time.

e Traffic Incidents: The most widely used model is RNN, since the result of an incident shows itself at a specific time
that requires a powerful network model to identify. Autoencoders are also popular models, since they can learn traffic
patterns and then detect and isolate accident conditions from regular conditions.

e Vehicle ID: CNN is the most widely used model, given its power in inferencing from images, as detection and tracking is
the main task in license plate and vehicle type/color identification. Existing CNN architectures that have been popularly
utilized are AlexNet and VGG models that have been pretrained on ImageNet.

e Traffic Signal Timing: RL has been the most commonly used model, given the control strategy nature of the traffic
signal timing task. Hybrids of CNN and SAE have been used to approximate or learn Q-values to improve DRL
performance.

e Ride-sharing and Public Transportation: CNN, RNN, and DNN have been the most frequently used models in the do-
main. Most researchers have built their own DL architecture to accomplish tasks in this category. Public transportation
demand and traffic flow prediction tasks have generally been done by either CNN or hybrid CNN models.

e Visual recognition tasks: CNN has been the most commonly used DL model for visual recognition tasks, again because
detection and tracking are efficient via CNN. Especially in traffic sign recognition tasks, the GTSRB dataset has been
one of the most frequently used benchmarks. Existing architecture such as ResNet, AlexNet, VGG and YOLO have
been used extensively, with the AlexNet and ResNet architectures being the most popular to build on. This can be
attributed to the fact that visual recognition tasks are not limited to ITS, so research done in other domains can be
utilized to accomplish ITS-related visual recognition tasks. .

Based on all the studies reviewed in the current paper, deep learning as an approach for addressing intelligent transportation
problems has undeniably achieved better results as compared to existing techniques. The major growth has been seen in the
last 3 years, constituting more than 70% of all ITS-related DL research performed so far.

5.3. Future work and Challenges

In recent years, DL methods have been able to achieve state-of-the-art results in different visual recognition and traffic state
prediction tasks. The majority of the visual recognition work such as vehicle and pedestrian detection, traffic sign recognition
have focused on autonomous driving or in-vehicle cameras. However, there have also been a significant number of overhead
cameras installed by city traffic agencies and state Departments of Transportation, that are mostly used for human-evaluated
surveillance purposes. To date, there have been only a few studies that have focused on using these cameras for determining
traffic volumes on freeways and arterials, traffic speed, and also for surveillance purposes such as automatically detecting
anomalies or traffic incidents (particularly at a large-scale, citywide level). Currently, the majority of traffic intersections rely
on using loop detectors for vehicle counting and for developing actuated traffic signals. However, installation of these loop
detectors is intrusive, in that road closures are required for installing such sensors. Cameras, on the other hand, can be used as
a cheap, nonintrusive detection sensor technology for counting traffic volume in all directions as well as turning movements,
the presence of pedestrians, etc., thereby facilitating smart traffic signal control strategies. However, two main challenges
need to be considered for developing DL techniques able to handle the use of cameras as sensors. Firstly, such methods
need to be able to handle the large volume of data collected from hundreds or thousands of cameras installed at a citywide
or statewide level. Efficiently providing real-time or near-real-time inferencing from this large volume of data is currently
one of the primary challenges of using cameras as sensors. Secondly, the methods developed need to be able to perform with
minimal or no calibration such that they are feasible to apply and maintain at a large-scale level. Also, the ITS community
needs to focus on creating more benchmark datasets for different research tasks related to DL applications. Although PeMS
has been used as a popular dataset for traffic state prediction as shown in 1, the absence of any comparable benchmark dataset
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Figure 5: ITS vs DL models - A:Traffic Character, B:Traffic Incident, C:Vehicle ID, D:Traffic Signal, E:Public Transport, F:Visual Recognition

for traffic incident inference and ride-sharing studies has resulted in most of these studies using an original dataset. This has
created difficulties in comparing different algorithms to determine the state-of-the-art model. Indeed, one of the reasons these
research areas have still not been significantly explored using DL models is likely attributable to their lack of a recognized
benchmark dataset. While this study has shown that DL models have been successfully applied to traffic state prediction,
vehicle ID and visual recognition tasks, significant improvements need to be made in the use of DL models for other research
topics such as traffic incident inference, traffic signal timing, ride sharing and other public transportation concerns. These
topics have still not been fully explored using DL models and hence there remains significant scope for improving detection
and prediction accuracy in these areas.

While DL models are becoming increasingly popular among researchers as the most effective classification method in
visual recognition tasks in the ITS domain, privacy and security are extremely important. Therefore, the potential for adver-
sarial attacks and thus the need for robustifying DL models have been receiving greater attention. (Adversarial attacks in this
domain are, in most of the cases, small changes in the input which are imperceptible to the human eye but make the classifier
classify incorrectly.) For example, self-driving cars use DL algorithms to recognize traffic signs [248] , other vehicles and
related objects for navigation purposes. However, if DL models fail to detect a stop sign due to slight modification in a couple
pixels, this can create serious impedance to the adoption of self-driving cars. Adversarial attacks are therefore an increas-
ing area of focus in different DL application research topics such as natural language processing, computer vision, speech
recognition and malware detection [249, 250, 251, 252, 253].

[254] has called into question the advisability of using neural networks and SVMs in security-sensitive applications,
demonstrating the legitimacy of their concern by attacking some arbitrary PDF files and the MNIST dataset using the gradient
descent evasion attack algorithm that they proposed. Their suggested solution is employing regularization terms in classifiers.
In the same vein [255] has shown that accuracy for perturbed input due to adversarial attacks is much less than that in the case
of high magnitude noise. Another downside of DL classification methods is that adversarial attacks can be independent of
the classification model, meaning that one can generate an adversarial attack that can fool a machine learning system without
any access to the model. These are called black-box attacks, a concept first introduced by [256], whereas white-box attacks
are when the attacker is aware of all relevant information such as the training dataset, the model, etc. For example, [257] has
used a Projected Gradient Descent (PGD) form of attack, which is different from related work that has mostly used a form of
attack involving the Fast Gradient Sign Method (FGSM). Also, [258] has come up with a systematic way to compute universal
attacks that are small image-agnostic perturbations that have a high probability of breaking most classifiers. Concurrent to
research regarding designing attacks and understanding the vulnerability of neural networks to them, researchers have studied
different ways to defend against adversarial attacks to make DNNs robust to them. One of the most popular approaches to
defense against adversarial attacks is to add the adversarial set generated by any algorithm to the training set and then training
the neural network with the new augmented dataset [259]. [260] has shown that although this method works for specific
perturbations, networks being trained by this method are not robust to all adversaries. For example, while working to mitigate
the effect of adversaries using denoising autoencoders (DAESs), [261] discovered that the resulting DNN became even more
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sensitive to perturbed input data.

Around the same time, [262] designed a metric to measure the robustness of networks and approximate this using the
encoding of their robustness as a linear program to improve the robustness of the overall DNN. Defense against adversarial
attacks can be looked at as a robust optimization problem, as [263] has shown that adversarial training using their robust
optimization algorithm results in the robustification of network optimization by increasing the accuracy and robustness of
the DNN. Another recent method to harden DNNs against adversarial attacks is defensive distillation which has shown
outstanding preliminary results in being able to reduce the adversarial attack success rate from 95% to 0.5% [264], but [265]
defeated this method by designing a powerful attack able to break this defense mechanism. Thus, defense and design against
adversarial attacks remain an open problem in DL applications.

As mentioned above, most studies regarding the application of DL models in transportation have paid no attention to
robustness. However, in light of emerging malware attacks, the importance of defending models from such attacks has
become increasingly important. These attacks usually destroy the input data by adding noise to them. These attacks can thus
disturb the control unit by causing it to infer wrong information from the data, resulting in serious accidents. Also, another
source of noise can be the weather conditions such as rainy or snowy conditions. Increasing the robustness of detection
models will enable ITS models to operate better in severe conditions and thus improve their performance.

In summary, though much research is happening in various domains of ITS using a variety of DL models, the focus
of future research in DL for ITS should encompass the following: how to develop DL models able to efficiently use the
heterogeneous ITS data generated, how to build robust detection models and how to ensure security and privacy in the use of
these models.
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