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ABSTRACT 1 
Movement specific vehicle classification and counting at traffic intersections is a crucial component for 2 
various traffic management activities. In this context, with recent advancements in computer-vision based 3 
techniques, cameras have emerged as a reliable data-source for extracting vehicular trajectories from traffic 4 
scenes. However, classifying these trajectories by movement type is quite challenging as characteristics of 5 
motion trajectories obtained this way vary depending on camera calibrations. Although some existing 6 
methods have addressed such classification task with decent accuracies, performance of these methods 7 
significantly relied on manual specification of several regions of interest. In this study, we proposed an 8 
automated classification method for movement specific classification (such as right-turn, left-turn and 9 
through movements) of vision-based vehicle trajectories. Our classification framework identifies different 10 
movement patterns observed in a traffic scene using unsupervised hierarchical clustering technique. 11 
Thereafter a similarity-based assignment strategy is adopted to assign incoming vehicle trajectories to 12 
identified movement groups. A new similarity measure was designed to overcome inherent short-comings 13 
of vision-based trajectories. Experimental results demonstrated the effectiveness of the proposed 14 
classification approach and its ability to adapt to different traffic scenarios without any manual intervention. 15 
Keywords: Movement Classification, Trajectory Analysis, Hierarchical Clustering   16 
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INTRODUCTION 1 
Traffic safety is one of the major transportation concerns in the world and in USA. Traffic 2 

intersections are one of the critical hotspots for the crashes and fatalities. In 2019, out of the 36,096 traffic 3 
fatalities, approximately 28% were related to traffic intersections and junctions alone (1). This can be 4 
attributed due to the complex interactions between vehicles and pedestrians that lead to the conflict points 5 
and potential accidents hotspots. Moreover, traffic intersections are major bottlenecks of the traffic system 6 
and a primary source of traffic delays too. Therefore, smart traffic intersection monitoring and management 7 
is one of the crucial steps for improving traffic safety and mobility. 8 

One of the first steps of smart traffic intersection monitoring is the efficient collection of traffic 9 
data, which includes total vehicle counts in the intersection and classification of turning movements and 10 
through movement for the different intersection approaches. Turning and through movement counts are 11 
essential for traffic analysis activities like signal-timing optimization and congestion management. These 12 
movement specific vehicle counts often guide the decision-making process followed by transportation 13 
agencies for tackling complex traffic management problems. As a result, there is a significant demand for 14 
such movement count data. 15 

Inductive loop detectors, radar sensors, and bluetooth devices are the common sources that provide 16 
traffic count data in general (2-4). Inductive loop detectors, although can provide reliable traffic movement 17 
counts, however they are intrusive, and their installation or repair work are time-consuming and can require 18 
stopping traffic movements too. However, the other two alternatives are regarded advantageous as they are 19 
non-instrusive, not limited by traffic scenarios, and can provide accurate information about vehicle 20 
trajectories. Recently, computer-vision based techniques aided by deep-learning methods have shown 21 
promising potential in object detection and classification tasks (5,6). Therefore, we can also produce similar 22 
vehicle trajectory information from existing traffic surveillance cameras. 23 

Trajectory data extracted from vision-based systems records vehicle’s locations with respect to 24 
image coordinates. Owing to which appearance of motion trajectories obtained from vision-sensors can 25 
change depending on its extrinsic calibrations. Therefore, proposing a particular algorithm for movement 26 
classification of vision-based trajectories is a difficult task.  Furthermore, the incomplete trajectories, 27 
identity switches caused by missed detections and severe occlusions poses a significant challenge at 28 
classification. While existing detection-augmentation techniques (7) can reduce such problems, they are 29 
not totally avoidable. 30 

Several studies on vehicle movement prediction and traffic incident detection also utilized similar 31 
vision-based trajectories. In those studies, mainly supervised (8) and semi-supervised (9) approaches were 32 
undertaken for analysing the vehicle trajectories. Undoubtedly supervised methods can provide better 33 
accuracies, but these approaches are not scalable for the movement classification task of our interest. In this 34 
regard, the AICity Challenge (10) focused on such video-based movement classification. While different 35 
strategies were adopted for efficient and effective classification purpose, all of them were guided by relevant 36 
features identified manually for individual traffic scenes. The manual effort required here although 37 
negligible, is an essential component of these classification schemes, owing to which these approaches can 38 
not readily adapt to different traffic scenes and have limited application in large-wide cuty wide 39 
deployment.  40 

This paper proposes an automated method for computer-vision based movement classification 41 
using unsupervised learning approach. The proposed approach consists of 4 distinct steps, the first being 42 
detection of the stopping location for vehicles in intersection approaches and then clustering the vehicle 43 
trajectories into movement clusters using unsupervised clustering. Then, the clusters are used to extract 44 
model trajectory for each movement, which can be compared to the incoming trajectories to classify them 45 
accordingly. The major advantage of the proposed approach is that it is an automated method, which can 46 
be applied to any traffic intersection approach to perform movement classification, thereby easily scalable 47 
to implement in large city-wide scale too with minimal manual intervention. The following section gives 48 
an overview of previous research on video-based vehicle trajectory classification. The third section 49 
specifies the details of our proposed classification algorithm. Section 4 provides description of the dataset 50 
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used in this study followed by experimental results in Section 5. The final section provides a summary of 1 
the paper and briefly outlines the future works. 2 
 3 
RELATED WORK 4 

The first step towards vision-based movement classification is trajectory formation using object 5 
detection and tracking algorithms. In the deep learning era, object detection and tracking made a tremendous 6 
progress both in terms of accuracy and efficiency. CNN algorithms like Faster R-CNN (11), Mask R-CNN 7 
(12) has achieved state-of-the-art accuracies in object detection tasks. But detection modules like YOLO 8 
(13), SSD (14), RetinaNet (15) are more efficient and thereby preferred for robust real time object detection. 9 
Various research works are going on to have a better trade-off between accuracy and efficiency. Tracking 10 
after detection is a popular strategy adopted for multi object tracking (MOT). Outputs obtained from object 11 
detection algorithms across video frames are used in the tracking phase which generates the trajectories of 12 
the objects. These tracking algorithms provide spatial as well as temporal information of vehicular 13 
movement within the video frames. SORT (16), DeepSORT (17) are some of the popular alternatives that 14 
provide decent accuracies in MOT problems.  15 

Existing studies that addressed for vehicle movement classification task from video data can be 16 
broadly classified into three categories Line-crossing, Zone-traversal, Trajectory similarity-based 17 
classification. First one follows a line-crossing based approach (18,19) where a virtual entry and exit line 18 
pair is considered for identifying each movement of Interest (MOI) inside a prespecified region of interest 19 
(ROI). This method is not very effective for classifying incomplete trajectories resulting from identity 20 
switches or occlusions. Studies belonging to the second category (20-22) are similar to the first one but 21 
instead of line pair several virtual zones (either entrance or both entry-exit zone pair) are manually selected 22 
depending on traffic scenarios. Although these studies produced better accuracies compared to line-crossing 23 
based methods, they were not very efficient for unstructured driving environments. The third group of 24 
studies (23,24) classified vehicle movements following a similarity-based assignment. Representative 25 
trajectories for different MOIs were manually chosen for this purpose. These similarity-based methods were 26 
found to be much efficient for classifying incomplete vehicle tracks. But they are not scalable when it comes 27 
to adapting to various complex traffic scenarios. 28 
Unsupervised methods are generally preferred for increasing scene-adaptability. In this regard, hierarchical 29 
clustering-based techniques have been used for classifying vehicular trajectories (25,26). Hausdroff 30 
distance between trajectory pairs have been predominantly used as similarity measure for these clustering 31 
techniques (27). Traditional hausdroff distance has certain drawbacks for comparing trajectories of unequal 32 
length as it is sensitive to noise and doesn’t account the direction of ordered data pairs. Various 33 
improvements (28,29) have been proposed to get rid of noise sensitivity and incorporate directional feature 34 
to the traditional hausdorff distance. Therefore, unsupervised techniques can be a good alternative towards 35 
automated movement classifications. 36 
 37 
METHODOLOGY 38 

The first step towards video-based vehicular movement classification is to extract vehicle 39 
trajectories which involves object detection and tracking process. Significant amount of past research has 40 
addressed vision-based detection-tracking problem which is already highlighted in the previous section. 41 
Therefore, our study mainly focused on the classification of vehicular trajectories to the corresponding 42 
movement types (i.e., through, right-turn, and left-turn). For obtaining the vehicle trajectories, state-of-the 43 
-art detection and tracking algorithms have been utilized, details of which are provided in the data 44 
description section.  45 

As discussed in the previous section, earlier attempts in this vision-based movement classification 46 
tasks are efficient. But all these methods significantly depend on manual annotations for specifying entry 47 
and exit regions of each movement type. Since, this study gears toward obtaining automated movement-48 
specific vehicle count at traffic intersections, we focused on unsupervised methods for addressing such 49 
classification tasks. 50 

 51 
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Proposed Classification Algorithm 1 
The proposed movement classification algorithm comprises of four stages. At first, ‘Stopbar’ is 2 

located near each intersection approach. In the next stage, vehicle trajectories are clustered according to 3 
their movement type which is then followed by modelling trajectory selection. In the final stage, each 4 
incoming vehicle’s trajectory is compared to modelling trajectories by pre-defined similarity measure and 5 
is classified accordingly.  6 

 7 
Stopbar Identification 8 
This is the first stage of of the proposed algorithm. Depending on the coverage of the vision-based detection 9 
system, vehicles may be detected and tracked from a much earlier stage even before their arrival near 10 
turning locations. Thus, the detection-tracking algorithms generate a significant amount of additional 11 
information for each incoming vehicle trajectory. Such additional information is irrelevant for the 12 
classification purpose. Due to this, inclusion of the additional information adversely affects the performance 13 
of the clustering algorithms and makes the clustering stage more time-consuming and cumbersome. To 14 
avoid these complications, the concept of stopbar which was introduced by Santiago-Chaparro et al., (30) 15 
for radar-based vehicle trajectory analysis has been adapted and applied in this study for vision-based 16 
stopbar identification. 17 
For placing the stopbar, first, stopped locations were extracted from tracking outputs obtained for a 18 
particular site. In this study, vehicle positions with no displacement in consecutive two video frames were 19 
chosen as stopped location. A horizontal line passing through the 50th percentile value of y-coordinates of 20 
these stopped locations are then marked as the stopbar. A visual representation of how stopbars are located 21 
from raw trajectory data is shown in Figure 1. Figure 1a shows all trajectory points obtained from detection 22 
and tracking at a sample intersection approach, and Figure 1b shows the “stopped locations” for all 23 
trajectories as red points and the corresponding “stopbar” line. 24 
After locating the stopbar (denoted by 𝑌 = 𝑌𝑠𝑙), only the relevant portions of vehicle trajectories present 25 
below the stopbar i.e., in 𝑌 ≥ 𝑌𝑠𝑙  region is extracted and stored as valid trajectory set [𝑇𝜈𝑠]. This valid 26 
trajectory set [𝑇𝜈𝑠] is further used in the clustering phase.  27 
Therefore, ‘Stopbar’ defined in this stage doesn’t necessarily align with the lane markings (i.e., stop-lines) 28 
or stop-signs placed at the intersection legs. Rather, it provides a general understanding of where from 29 
vehicles are diverging at each incoming approach which is useful for identifying relevant patterns of 30 
different movement types. The next stage involves identifying the movement clusters from the trajectories 31 
extracted after the stopbar. 32 
 33 

 34 
Figure 1. Stopbar identification process from vehicle trajectories at a sample intersection 35 

approach: (a) trajectory points (b) stopped locations (red points) and the stopbar line  36 
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 1 
Identifying movement clusters 2 
Choice of clustering algorithm and choice of similarity measure are the two major factors that influence the 3 
classification process while using unsupervised methods. Clustering algorithms like hierarchical clustering 4 
and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) have been mainly used in 5 
previous studies for trajectory analysis purpose (31-33). DBSCAN algorithm which has shown promising 6 
potential in outlier or anomalous trajectory detection requires setting of two hyperparameters (epsilon and 7 
min points). Selecting appropriate values of these hyparameters provides site-specific solutions and will 8 
result in low-scene adaptability. On the other hand, hierarchical clustering only requires the number of 9 
clusters as input, which makes it more suitable for the movement classification task of our interest. 10 
Clustering algorithm- Owing to the reasons stated above, we have used agglomerative clustering algorithm 11 
for identifying the movement clusters. 12 
Similarity measure- After selection of the clustering algorithm, the next critical aspect of trajectory 13 
clustering is the choice of similarity measure. In this study, three factors have been considered while 14 
designing the similarity measure. 15 

a) Distance similarity- At traffic intersections, vehicle moving in a particular direction generally 16 
traverse through a fixed region. Therefore, one of the important aspects while movement 17 
classification is to check the spatial proximity between two trajectories. Traditional Hausdroff 18 
distance, which has been widely used in the literature for this purpose (27,28) returns the maximum 19 
of directed hausdroff distance between a trajectory pair. Since our intended classification task deals 20 
with trajectories of dissimilar length and incomplete trajectories, the reverse condition (i.e., 21 
minimum value) was adopted for this study. Therefore, the distance similarity between two 22 
trajectories ‘i’ and ‘j’, denoted by 𝐷𝑆(𝑖, 𝑗), is defined as, 23 

𝐷𝑆(𝑖, 𝑗) = min (𝑑𝐻(𝑖, 𝑗), 𝑑𝐻(𝑗, 𝑖))                    (1) 24 
where, 𝑑𝐻(𝑃, 𝑄) is the directed hausdroff distance from trajectory ‘P’ to ‘Q’. It is the maximum 25 
value among minimum distances observed between points of trajectory ‘P’ to points of trajectory 26 
‘Q’. 27 

𝑑𝐻(𝑃, 𝑄) =  {   𝑑(𝑝, 𝑞)𝑞∈𝑄
𝑚𝑖𝑛 }𝑝∈𝑃

𝑚𝑎𝑥        (2) 28 
Here, ‘p’, ‘q’ stands for data points (vehicle positions in this case) of trajectory ‘P’ and ‘Q’ 29 
respectively. 𝑑(𝑝, 𝑞) is the Euclidean distance between p and q. 30 
 min value used for incomplete trajectory problem.  31 

b) Angular similarity- For traffic intersections, length of obtained vehicle trajectories varies 32 
significantly depending on their movement direction (right, left, through) and camera-coverage. 33 
Along with this, the presence of broken or incomplete trajectories also produces vehicle trajectories 34 
of unequal length even within a specific movement group. Therefore, considering the distance 35 
similarity alone is not sufficient for such movement classification purpose.  36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 

 49 
 50 

Figure 2. Illustration for defining angle similarity  51 
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 1 
For estimating directional difference between trajectories where incomplete trajectories of varying 2 
length might be present across different movement clusters, the following angle similarity measure 3 
𝑇𝑠 has been proposed.  4 

𝐴𝑑(𝑖, 𝑗) = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑉𝑖⃗⃗  𝑎𝑛𝑑 𝑉𝑗−𝑖⃗⃗ ⃗⃗ ⃗⃗     𝑤ℎ𝑒𝑟𝑒 𝐴𝑑(𝑖, 𝑗) ∈ [0, 360°]   (3) 5 

Where,  𝑉𝑖⃗⃗  denotes the vector pointing from starting position to the end position of vehicle trajectory 6 
‘i’. 7 
And 𝑉𝑗−𝑖⃗⃗ ⃗⃗ ⃗⃗  is the vector pointing from closest position of trajectory ‘j’ from the starting location of 8 
vehicle trajectory ‘i’ to the closest position of trajectory ‘j’ from the end location of vehicle 9 
trajectory ‘i’,  10 
e.g., for the three trajectories A, B, C as shown in Figure 3. 11 

𝑉𝐵−𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  〈𝐵9[𝑥] − 𝐵2[𝑥], 𝐵9[𝑦] − 𝐵2[𝑦]〉 12 
here 𝐵𝑧[∗] denotes the image coordinates of the zth position in the trajectory B. Similarly, for 13 
trajectory A and B, 14 

𝑉𝐵−𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  〈𝐵10[𝑥] − 𝐵3[𝑥], 𝐵10[𝑦] − 𝐵3[𝑦]〉 15 
also, for trajectories of different patterns and lengths 𝑉𝑗−𝑖⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝑉𝑖−𝑗⃗⃗ ⃗⃗ ⃗⃗    16 
hence, the angle similarity 𝑇𝑠 is defined as, 17 

𝑇𝑠(𝑖, 𝑗) = {
𝐴𝑑(𝑖, 𝑗)   𝑤ℎ𝑒𝑟𝑒 𝐿(𝑖) ≤ 𝐿(𝑗)

𝐴𝑑(𝑗, 𝑖)   𝑤ℎ𝑒𝑟𝑒 𝐿(𝑖) > 𝐿(𝑗)
          (4) 18 

Where, 𝐿(𝑖) is the length of trajectory ‘i’. For example, for trajectory ‘B’ shown in Figure 3, 19 

𝐿(𝐵) = √ (𝐵12[𝑥] − 𝐵1[𝑥])
2 + (𝐵12[𝑦] − 𝐵1[𝑦])

2 20 
 21 

c) Proximity of end locations- For vision-based detection systems depending on their extrinsic 22 
calibration, two adjacent movement groups might appear as very similar if only the distance and 23 
angle similarities are observed as defined above. For example, this can be observed in cases when 24 
trajectories right-turning lane and through-movement where they can appear close to each other. 25 
However, the right-turn movements can get out of the camera coverage sooner than the through 26 
movements, which will lead to different end locations points for right-turn and through movements, 27 
as shown in Figure 1a. Therefore, when different movement streams are densely located within 28 
the video frame, using the previous two similarity aspects might lead to misclassification. The end 29 
positions of vehicles, turning (left or right) or procedding through an intersection are significantly 30 
different from each other (unless inflicted with incomplete trajectory problem) and thereby can 31 
serve as an additional factor for improving the classification process. Since this study aims to 32 
classify trajectories obtained from vision-based sensors, the end locations of vehicular trajectories 33 
were also taken into consideration. 34 
In this step, first rear distance [𝐷𝑅] is computed. 35 

𝐷𝑅(𝑎, 𝑏) = √ (𝑎𝑒𝑛𝑑[𝑥] − 𝑏𝑒𝑛𝑑[𝑥])
2 + (𝑎𝑒𝑛𝑑[𝑦] − 𝑏𝑒𝑛𝑑[𝑦])

2    (5) 36 
here, 𝑎𝑒𝑛𝑑[∗] denotes the coordinates of the end location of trajectory ‘a’. 37 
 38 
The final proximity factor [𝑃𝐸] is estimated as following, 39 

𝑃𝐸(𝑖, 𝑗) =

{
 

 
𝑇𝑠(𝑖,𝑗)

3.6
× {𝐷𝑅(𝑖, 𝑗) − 𝐷𝑆(𝑖, 𝑗)}                                   𝑤ℎ𝑒𝑟𝑒, 𝐷𝑅(𝑖, 𝑗) ≥ 𝐷𝑆(𝑖, 𝑗) 

𝑇𝑠(𝑖,𝑗)

3.6
× {𝐷𝑅(𝑖, 𝑗) − 𝐷𝑆(𝑖, 𝑗)}   𝑤ℎ𝑒𝑟𝑒, 𝐷𝑅(𝑖, 𝑗) < 𝐷𝑆(𝑖, 𝑗) 𝑎𝑛𝑑 𝑇𝑠(𝑖, 𝑗) ≤ 15 

0                                                    𝑤ℎ𝑒𝑟𝑒, 𝐷𝑅(𝑖, 𝑗) < 𝐷𝑆(𝑖, 𝑗) 𝑎𝑛𝑑 𝑇𝑠(𝑖, 𝑗) > 15

       (6) 40 

 41 
The final similarity measure [𝑆(𝑖, 𝑗)] to be used in the clustering phase is chosen as, 42 

𝑆(𝑖, 𝑗) = [𝐷𝑆(𝑖, 𝑗) + {𝑤1 × 𝑇𝑠(𝑖, 𝑗)} + {𝑤2 × 𝑃𝐸(𝑖, 𝑗)}]        (7) 43 
A lower value of 𝑆(𝑖, 𝑗) thus indicates higher similarities between the two trajectories. As seen from the 44 
above formulations, the final proximity factor will increase 𝑆(𝑖, 𝑗) when the trajectories belong to two 45 
different movement groups. Also, this increment is proportional to the angle similarity. As a result, for 46 
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incomplete trajectories which follow the same movement (although 𝐷𝑅 ≥ 𝐷𝑆 ), this increment will be 1 
negligible. 2 
At traffic intersections where more than one lane is dedicated for a moving in a certain direction, multiple 3 
vehicular streams are observed under a specific movement type. For these cases, rear distance 𝐷𝑅 can be 4 
smaller than the distance similarity 𝐷𝑆 within a movement group (Figure 1a). In such scenarios, the 5 
proximity factor will decrease the final estimate of  𝑆(𝑖, 𝑗) thereby reducing dissimilarities between spatially 6 
separated vehicular streams within each movement type. 7 
Linkage Rule- To scale dissimilarities between input trajectories, a linkage criterion is to be chosen for 8 
hierarchical clustering. Existing linkage rules include minimum distance or single linkage, maximum 9 
distance or complete linkage and unweighted average. The following two considerations governed the 10 
choice of linkage criteria at this stage.  11 

o At traffic intersections, multiple vehicular streams can be observed for each movement group. 12 
o Number of vehicle trajectories observed for different movement groups are not always similar. This 13 

also applies for different vehicular streams within each movement group. Owing to which the 14 
spread of vehicular streams as obtained from vision-based sensors varies irrespective of their 15 
movement direction. 16 

Therefore, the shortest distance or single linkage criterion can be more suitable for this clustering phase. 17 
The linkage distance between two clusters 𝑑(𝑔𝑖 , 𝑔𝑗) is obtained as 18 

𝑑(𝑔𝑖 , 𝑔𝑗) = min(𝑆(𝑎, 𝑏)) ∀ 𝑎 ∈ 𝑔𝑖 , 𝑏 ∈ 𝑔𝑗          (8) 19 
Where 𝑔𝑖 , 𝑔𝑗 are two different movement groups obtained from clustering and a, b are the vehicular 20 
trajectories present in those respective movement groups. The movement clusters obtained in this stage are 21 
further used to extract modelling trajectories for each movement of interest. 22 
 23 
Modelling trajectory selection  24 
Although classifying vehicular trajectories by clustering is an automated approach, this isn’t preferable for 25 
analysing large number of vehicular trajectories (as such cases will create a significant calculation 26 
overhead). To overcome this problem, the concept of similarity-based assignment has been used in this 27 
study. This concept, which was also utilized in several manual based movement classification methods 28 
(23,24), demands specification of modelling trajectories. Such trajectories represent the general trend of 29 
how vehicles move while turning or proceeding through the intersection. Hence, in this stage, one or more 30 
trajectories are to be chosen from each identified movement cluster as modelling trajectories.  31 
For automated selection of modelling trajectories, the identified movement clusters are again grouped into 32 
one or more sub-clusters depending on the number of lanes dedicated for each movement direction. Similar 33 
hierarchical clustering process, as discussed above in “identifying movement clusters” step, is followed for 34 
this purpose. However, unlike the previous clustering stage, the objective here is to find intra-cluster lane-35 
specific movement patterns. Therefore, in this clustering phase, the proximity factor is not considered for 36 
obtaining the final similarity measure (as it might separate out incomplete trajectories from full-length 37 
ones). Also, vehicle trajectories are not always uniformly spaced within each identified cluster and 38 
sometimes even within lane-specific movement groups. As a result, proceeding with single linkage rule 39 
might group trajectories passing through different lanes into one cluster. Since our aim here is to obtain 40 
lane-specific trajectory groups, single linkage criterion is replaced with average linkage.  41 
Appropriate selection of modelling trajectories is crucial for the final classification stage. Ideally the central 42 
trajectory should be chosen for this purpose, but since video-based trajectories are curbed with broken and 43 
incomplete trajectory problem, the central trajectory found from sub-clustering might include incomplete 44 
trajectories, which won’t serve the intended purpose of modelling trajectory. Therefore, longest trajectories 45 
of the identified sub-clusters are selected as modelling trajectories for that specific movement of interest. 46 
 47 
Movement Assignment 48 
In this stage, each incoming vehicle trajectory is compared with the modelling trajectories as identified 49 
from the previous stage. The modelling trajectory which is most similar (i.e., resulting in minimum 𝑆(𝑖, 𝑗) 50 
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value) to the input vehicle trajectory is identified and the corresponding movement type is assigned to the 1 
incoming vehicle id.  2 
Similarities of the input trajectory with the modelling trajectories are computed using predefined similarity 3 
measure as shown in Equation 7. The proximity factor for end locations is omitted from the final similarity 4 
term, for the calculation purpose. This is done for the following reason. 5 
The longest trajectories representing each movement group is used as reference or modelling trajectory. So, 6 
the modelling trajectory is not necessarily the central trajectory of each identified movement cluster. 7 
Therefore, considering the end-proximity factor might classify the incomplete trajectories of one movement 8 
type with an adjacent movement class, end location of which is more similar to those incomplete trajectories 9 
belonging to the first movement type.  10 
Following this similarity-based movement assignment, the movement directions for all vehicle trajectories 11 
included in the testing phase is identified, which is further checked with the actual movement-directions to 12 
evaluate the performance of our proposed algorithm.  13 
 14 
Evaluation Metrics 15 
For specifying the evaluation metrics, we first define 4 cases – True Positive (TP), True Negative (TN), 16 
False Positive (FP) and False Negative (FN). TP is when an algorithm classifies a movement correctly. TN 17 
is when an algorithm rejects certain movement classes correctly. FP is when the algorithm wrongly assigns 18 
a movement class and FN is when that algorithm wrongly rejects certain movement classes. 19 
Accuracy is calculated as ratio of total number of correct classifications to total number of trajectories to 20 
be classified. It is obtained as 21 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (9) 22 

Balanced accuracy is a performance metric parameter which is used to handle imbalanced dataset. It is the 23 
average of true positive rate (TPR) and true negative rate (TNR)  24 
Where, 25 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (10)        𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
     (11) 26 

 27 
The overall balanced accuracy is calculated as macro-average of balanced accuracy of all classes.        28 

(𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
∑(𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑢𝑢𝑟𝑎𝑐𝑦)𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
                          (12) 29 

 F1 score is another parameter which is considered to get performance for those cases where number 30 
of classes are imbalanced. It is the harmonic mean of the precision and recall. These can be expressed as, 31 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (13)    𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
   (14) 32 

For overall F1 score, we take the macro-average for all classes 33 

(𝐹1 𝑆𝑐𝑜𝑟𝑒)𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
∑(𝐹1 𝑆𝑐𝑜𝑟𝑒)𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
                 (15) 34 

 35 
Overview of methods used for comparison  36 
To understand how our proposed algorithm compares with alternative approaches, three existing methods 37 
designed for video-based vehicle trajectory classification have been chosen. The first alternative taken into 38 
consideration is line-based classification (18). This is a manual approach which requires specification of 39 
virtual entry-exit lines for each movement of interest. The second one proposed by Liu. et. al., (23) is a 40 
semi-automated approach which looks into shape-similarities of trajectory pairs. This approach follows 41 
rule-based assignment strategy after manual selection of modelling trajectories. Along with these two 42 
methods, an automated approach was also included for comparison purpose. In this method proposed by 43 
Hao. et. al., (29) hierarchical clustering was adopted with length scale directive hausdroff (LSD hausdroff) 44 
distance as similarity measure. A brief summary of all methods included in the comparison stage is 45 
presented in Table 1. 46 
 47 
 48 
 49 
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TABLE 1 Methods Used for Comparison 1 
  2 

Line based Shape similarity based LSD Hausdroff Proposed Method 

▪ Virtual entry-exit 

line pair manually 

identified for each 

MOI. 

▪ Vehicle crossing 

these line-pairs are 

assigned the 

corresponding 

MOI. 

▪ Set of modelling 

trajectories are manually 

selected for each MOI 

from line-based method. 

▪ Distance and directional 

similarities with 

modelling trajectories 

are considered. 

▪ Assigned to movement 

where highest similarity 

is observed given 

similarity values are 

within predefined limits. 

▪ Hierarchical 

clustering with 

average linkage 

criteria used for 

movement 

clustering. 

▪ LSD hausdroff 

distance used as 

similarity measure. 

▪ Stop-line identification. 

▪ Hierarchical clustering 

with single linkage for 

movement clustering. 

▪ Similarity measure 

defined in section 4 

used.  

▪ Sub-clustering phase for 

modelling trajectory 

selection. 

▪ Similarity based 

movement assignment. 

 

 3 
DESCRIPTION OF DATA 4 

Video data used for current study was collected from two traffic intersections located in Dubuque, 5 
Iowa. The videos were obtained from cameras each facing towards a single inbound intersection approach. 6 
In total, this dataset contains 8 videos (each of 4-hours duration), capturing vehicle movements from all 7 
four inbound approaches of these two intersections.  8 

For this study, we adopted DeepStream SDK (34) to process multiple video streams. We used a 9 
ResNet18 model that is pretrained by traffic camera data. It supports the classes of car, bicycle, person, and 10 
road sign. We also adopted the tracker based on discriminative correlation filter (DCF). Our detection-11 
tracking module generates a sequence of bounding box coordinates for each unique vehicle observed in the 12 
video stream, thereby forming a trajectory. 13 

 14 
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A visualization of the vehicle trajectory data points obtained from the above-mentioned detection-1 
tracking framework is shown in Figure 3. At each inbound approach, the 1st 30 minutes video has been used 2 
for training purpose. Vehicle trajectories obtained from the remaining 3.5 hours video duration has been 3 
used for final evaluation. The comparative performance of our proposed algorithm and the three chosen 4 
existing methods on this dataset is presented in the next section. 5 

 6 
Figure 3. Sample Raw Trajectory Data Obtained from Two Intersection Approaches:  7 
(a), (b): NB and WB approach of intersection 1; (c), (d) NB and EB approach of intersection 2 8 

 9 
RESULTS  10 

As described in the methodology section, our proposed method identifies the modelling trajectories 11 
representative of each movement group following a three-step training phase. These trajectories are then 12 
used in the final movement assignment stage. A visual representation of the results obtained at these three 13 
steps is shown in Figure 4. Figure 4a shows the stopbar location identified from trajectories of a sample 14 
intersection approach, while Figure 4b shows the movement cluster identification from trajectories 15 
obtained beyond the stop bar. Figure 4c shows the third step of the proposed approach, modelling trajectory 16 
selection. Note here, the raw trajectory dataset (as seen in Figure 4.a) used here are extracted from the first 17 
30 min video stream only. 18 

 19 
 20 
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Figure 4. Sample results from different stages of the proposed approach: 1 
(a) stopbar identification, (b) movement clusters, (c) mdoelling trajectory 2 

 3 
To understand how the different classification models (listed in Table 1) perform across different 4 

traffic scenarios, model performances were grouped into two categories as NB-SB and EB-WB. Average 5 
of individual model performances in north-bound and south-bound approaches are listed in the first 6 
category, while the second category provides the average of individual model performances observed in 7 
east-bound and west-bound approaches. 8 

Such categories were formed as for north-bound and south-bound approaches mostly single 9 
vehicular streams were observed for each movement group and these trajectories were sparsely located 10 
within the video-frame (see Figure 3a, 3c), whereas, in the other category i.e., in east and west bound 11 
approaches (see Figure 3b, 3d) vehicular streams were densely located and multiple lanes were dedicated 12 
to one or more movement group. 13 

The performance of different methods across the two specific categories as evaluated on the test 14 
dataset is shown in Table 2. 15 

TABLE 2 Comparison of the proposed algorithm with the baseline methods  16 
 17 

Method 
Accuracy (%) balanced accuracy (%) F1 score 

NB-SB EB-WB NB-SB EB-WB NB-SB EB-WB 

Line based 95.76 96.10 96.86 97.61 0.98 0.98 

Shape similarity based 89.88 99.01 85.48 98.34 0.94 0.99 

LSD hausdroff 89.36 56.87 89.21 69.71 0.90 0.64 

 Proposed approach 99.64 99.80 99.42 99.90 1.00 1.00 

 18 
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The comparative performance of different approaches considered are highlighted below- 1 
a. Performance of line-crossing based method didn’t vary across different sites since for this method 2 

virtual entry-exit line pairs for each MOI are carefully placed observing movement patterns at each 3 
location. The only source of error was incomplete trajectories that didn’t cross any of those pre-4 
specified line-pairs and hence were not classified.  5 

b. For the shape-similarity based approach, achieved accuracies were comparatively lower in NB-SB 6 
locations. This is due to the fixed distance and angle thresholds considered in this method. For NB-7 
SB locations in the dataset, mainly single vehicular streams are observed for each MOI, and one or 8 
more full length central trajectories are chosen as modelling trajectories. Therefore, vehicle 9 
trajectories that follow a different path while moving in a certain direction remains unclassified if 10 
they exceed either of the two thresholds although it has lowest similarity with the modelling 11 
trajectories of its movement direction. 12 
For EB-WB locations closely placed movement groups are observed and mostly multiple vehicular 13 
streams are present within each movement group. Therefore, the percentages of unclassified 14 
trajectories arising from fixed threshold considerations are significantly less in these locations.  15 

c. The third method, LSD hausdroff, although automated was only able to classify movement patterns 16 
with large spatial separation. As a result, it achieved accuracies around 90% for NB-SB locations. 17 
Whereas for EB-WB locations where vehicle trajectories were densely located within the video 18 
frame this method was prone to misclassification and the classification accuracies reduced 19 
significantly.  20 

d. As seen from Table 3, the proposed algorithm in this study performed well although different 21 
intersection locations of the used dataset and achieved compararable or higher accuracies for both 22 
NB-SB and EB-WB approaches. Among the four different methods used for comparison, this is 23 
the only automated approach which isn’t limited by traffic scenarios. Classification process was 24 
least influenced by presence of broken or incomplete trajectories which is an unavoidable aspect of 25 
vision-based trajectories.  26 

In addition to the vehicle trajectory data, the proposed algorithm utilizes movement-specific lane-level 27 
information for automated selection of modelling trajectories. To understand how our classification method 28 
will perform in absence of such movement-specific lane level information, proposed classification 29 
algorithm has been also assessed with single modelling trajectory selection criteria (i.e., the longest 30 
trajectory from each movement group is chosen in this case without any sub-clustering. Comparison of the 31 
algorithm performance under these two different modelling trajectory selection criteria is shown in Table 32 
3. 33 
 34 

TABLE 3 Effect of Modelling Trajectory selection on Proposed Algorithm Performance 35 
 36 

Location Modelling Trajectory Choice Accuracy (%) balanced accuracy (%) F1 score 

North bound 

South bound 

Lane-specific 99.64 99.42 1.00 

Single 99.71 99.54 1.00 

East bound 

West bound 

Lane-specific 99.80 99.90 1.00 

Single 88.09 95.47 0.90 

 37 
It can be observed that for EB-WB locations, where densely located vehicle trajectories has to be 38 

classified, selecting multiple modelling trajectories according to dedicated noumber of lanes significantly 39 
improves the algorithm performance. On the other hand, in NB-SB locations where movement groups are 40 
separated by large spatial margin, choice of modelling trajectories had negligible influence over the 41 
algorithm performance. Nonetheless, proposed modelling trajectory selection criteria aided our 42 
classification approach achieve high accuracy percentages without any scene-specific distance and angle 43 
threshold consideration. 44 

 45 
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 1 
CONCLUSIONS 2 
In this study, we tried to address movement classification task for vehicle trajectories at traffic intersections 3 
obtained from vision-based sensors. A fully automated method has been proposed for this purpose 4 
considering the inherent short-comings of video-based detection systems. Further, the choice of similarity 5 
measure carefully designed for non-uniform motion trajectories and use of lane-specific modelling 6 
trajectories helped our classification approach adapt to different traffic scenarios. It has been observed that 7 
appearance of movement patterns within the video frame has negligible influence on algorithm 8 
performance. As a result, the proposed method achieved high accuracies and F1-score close to 1 for all the 9 
eight intersection approaches used for evaluation. Experimental results on this dataset show that in 10 
comparison to existing alternatives, our method has similar or better performance for such movement 11 
classification tasks, without requiring any manual intervention and thereby can be scalable for 12 
implementation in large city-wide or district-wide levels.   13 
The current stopbar-identification process, (which is a crucial part of our proposed classification 14 
framework) is designed for trajectories obtained from a single intersection approach. In future, we’ll extend 15 
this stopbar identification part for applying in traffic scenes where multiple inbound approaches are visible 16 
within a single video frame. We also intend to explore deep-learning based object detection models for 17 
automatic extraction of lane-level or stop-line information relevant for movement classification purpose. 18 
 19 
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