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Abstract

Accurate traffic data collection is essential for supporting advanced traffic management system operations.
This study investigated a large-scale data-driven sequential traffic sensor health monitoring (TSHM) module
that can be used to monitor sensor health conditions over large traffic networks. Our proposed module con-
sists of three sequential steps for detecting different types of abnormal sensor issues. The first step detects
sensors with abnormally high missing data rates, while the second step uses clustering anomaly detection
to detect sensors reporting abnormal records. The final step introduces a novel Bayesian changepoint mod-
elling technique to detect sensors reporting abnormal traffic data fluctuations by assuming a constant vehicle
length distribution based on average effective vehicle length (AEVL). Our proposed method is then com-
pared with two benchmark algorithms to show its efficacy. Results obtained by applying our method to the
statewide traffic sensor data of Iowa show it can successfully detect different classes of sensor issues. This
demonstrates that sequential TSHM modules can help transportation agencies determine traffic sensors’
exact problems, thereby enabling them to take the required corrective steps.

Keywords: sensor health monitoring, anomaly detection, clustering analysis, bayesian changepoint
modeling

1. Introduction

Intelligent Transport Systems (ITS) applications, such as for detection of traffic congestion or incidents
(Chakraborty et al., 2018a,b) and for decision-making (Shi and Abdel-Aty, 2015; Ma et al., 2017; Mori
et al., 2015) have shown great effectiveness for advanced traffic management. Implementation of these ap-
plications requires reliable, high-quality data collected from roadway sensors, such as radar sensors, loop
detectors, and video detectors. However, inevitably these types of traffic sensors suffer from erroneous
data due to communications loss and malfunctioning (Lee and Coifman, 2011). Therefore, it is impor-
tant to determine sensor health conditions before data are used for real-time traffic operations purposes or
planning/policy development.

Typically, traffic sensor health monitoring (TSHM) is done by matching sensor readings to predefined
thresholds (Turochy and Smith, 2000; Chen et al., 2003). In these methods, thresholds are placed on the
maximum volume or occupancy values observed by the sensors, number of sensors with zero volume and
nonzero occupancy, average effective vehicle length, and other similar traffic statistics. Sensor health is
determined based on the number of faulty records observed for each sensor. Other studies have also been
performed where sensor health is determined at the network level by taking into consideration neighboring
sensors (Sun et al., 2016; Lu et al., 2014).

However, thresholds determined by these methods are based on daily aggregate traffic data. Unfortu-
nately, such high-level aggregation fails to capture sensors’ frequent within-day temporal abnormalities,
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which can also indicate faulty sensor conditions, in part because detailed evaluation of sensors’ temporal
abnormalities requires the processing of large-scale traffic data, which is beyond the capabilities of tra-
ditional computation techniques. For example, data obtained from the 300 radar-based traffic sensors of
Iowa account for 15 gigabytes monthly. In this study, we have therefore developed a data-driven, massively
parallelizable TSHM module that can handle large-scale statewide traffic data sources to detect abnormal
sensors based on overall and temporal abnormalities.

Our TSHM module utilizes three steps for detecting abnormal sensors. First, based on clustering anal-
ysis, sensors with an abnormally high missing data percentage are labeled as faulty sensors. The module’s
second and third steps are based on the average effective vehicle length (AEVL) statistic. AEVL, proposed
by Turochy and Smith (2000) combines volume, occupancy, and speed records using traffic flow theory to
estimate vehicle dimensions. The second step of our TSHM module uses each sensor’s AEVL distribution
to determine abnormal sensors using clustering analysis. AEVL values, being representative of vehicles’
physical dimensions, are robust to exogenous factors, such as traffic incidents and weather conditions.
Therefore, the third step of our proposed TSHM module utilizes the assumption of constant vehicle length
to determine changepoints in the temporal time-series data for each sensor. The temporal matrix of the
changepoints obtained are then processed to extract the sparse matrix of all sensor abnormalities detected.
Sensors that show frequent abnormalities can then be classified as abnormal sensors.

The major contributions of this study are as follows:

• We propose a data-driven stepwise method of anomalous sensor identification based on clustering
analysis. This helps identify thresholds automatically for anomalous sensor detection. Our proposed
method is similar to sieving analysis, wherein each sieve/step can be used to identify anomalous
sensors by their distinct characteristics. This can enable authorities managing traffic sensors to easily
identify sensor issues and take steps accordingly.

• The third step of our TSHM module. Based on the constancy of the vehicle length assumption, we
identify the changepoints in the temporal matrix of the sensor data based on Bayesian analysis. And
our entire method is scalable using massively parallelizable techniques, making it feasible to apply at
a statewide level.

The rest of the paper is organized as follows. Section 2 provides a brief description of the relevant literature
on sensor health monitoring followed by the details of the methodology adopted in this study in Section 3.
Section 4 provides details of the data used and Section 5 the results obtained. Finally, Section 6 provides a
summary of our results and points to potential directions for future study.

2. Literature Review

Sensor health monitoring is a crucial component of ITS applications. Over the last several decades,
a number of studies have investigated this area. Traditionally, anomalous sensors have been identified by
comparing individual traffic parameters to predetermined thresholds. For example, Payne and Thompson
(1997) used predetermined thresholds of volume, occupancy, and speed, comparing these with 30-second
and 5-minute aggregated traffic data to detect abnormal sensors. However, the unlikely assumption that traf-
fic parameters are independent of one another is a primary concern regarding any single-parameter threshold
algorithm. Therefore, Jacobson et al. (1990) used the relationship between traffic volume (q) and density
(k), introducing the volume-occupancy ratio to check for anomalous data. If observed data fell outside ac-
cepted k−q boundaries, it was flagged as erroneous data. However, the k−q ratio algorithm labeled the data
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as erroneous when both k and q were equal to zero although such situations can also arise when no vehicle
passed by the sensor (Chen et al., 2003). Chen et al. (2003) have therefore suggested that the k − q ratio
region is sensitive to the threshold settings and developed a daily statistics algorithm (DSA) using density
and volume time series data to generate four statistic factors to identify the anomalous loop detectors. Vana-
jakshi and Rilett (2004) have used the idea of conservation of vehicles for a series of sequential detectors,
examining detector anomalies at the network instead of single-sensor level.

Most of the sensor anomaly detection algorithms listed above are mainly based on occupancy and vol-
ume, which can easily be obtained using single loop detectors. However, individual vehicle speed calcula-
tion requires paired loop detectors or advanced roadway sensors such as microwave radar sensors, and etc.
Due to their low installation cost, high accuracy, and small size, such advanced sensors are now widely used
for traffic data collection (Klein et al., 2006). Hence, algorithms have also been developed for faulty sensor
detection using all three traffic parameters: speed, volume, and occupancy. Turochy and Smith (2000) have
proposed average effective vehicle length (AEVL) as an approximate function of volume, occupancy, and
speed. Their study showed that AEVL can successfully capture a wide range of data anomaly types which
single-parameter threshold-based methods cannot. Similar other studies using AEVL for anomalous sensor
identification have also shown its efficacy (Al-Deek et al., 2004; Wells et al., 2008).

Although AEVL has proven a useful indicator for sensor health monitoring, most studies still use pre-
determined thresholds. However, different detectors such as dual loop detectors, laser sensors, microwave
radar sensors, etc. record data in different ways, not all of which are well adapted for sensor analysis
based on predetermined thresholds. For example, for sensors that can self-recover in the case of a tem-
poral anomaly, threshold-based algorithms might be too sensitive. To eliminate these pre-defined AEVL
thresholds, Lu et al. (2014) have developed a temporal and spatial based sequential algorithm for sensor
health screening. Their study proposed a Multiple-Comparisons-with-the-Best (MCB) model to compare
AEVL between adjacent lanes and stations to assess any target detector’s data quality. However, such
between-station comparisons might not work well if nearby stations also have data quality issues. Also, the
sequential MCB algorithm cannot be applied to isolated sensors or sensors with only one lane in each direc-
tion since it requires both within-station and between-station comparisons. To overcome these limitations,
this study’s proposed TSHM module introduces a data-driven approach to identifying faulty sensors based
on clustering analysis for large-scale statewide sensor data.

Currently, most sensor-screening algorithms use daily aggregated traffic data to determine abnormal
sensors, thereby ignoring temporal anomalies in the data stream. For example, Wu et al. (2017) have
recently introduced a spatiotemporal pattern network (STPN) algorithm that can capture the time-series
features of volume and speed data by a symbolization process. Their D-Markov model, trained on system-
atically ordered stations, calculates a mutual information matrix to identify anomalous sensors having low
mutual information values. However, the well-ordered systematic sensor information required for training
their STPN model is difficult to obtain on a statewide scale. Additionally, if any traffic sensor is added or
removed, retraining the model becomes difficult. Finally, considering the large scale of traffic data collected
from sensors at the statewide level, it is well beyond the capabilities of traditional computation techniques
to train a complex STPN model for use at this level. Therefore, in this study, we propose a massively par-
allelizable TSHM approach that can extract temporal anomalies from large-scale traffic data streams and
identify anomalous sensors showing frequent temporal abnormalities.

3. Methodology

Sensor abnormalities can arise due to high missing data percentage or anomalous sensor readings. As
explained earlier, according to traffic flow theory, AEVL is an approximate function of speed, volume, and
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occupancy and is considered a useful indicator for monitoring traffic data quality. Therefore, in this study,
we calculate AEVL as follows to identify anomalous sensor readings:

AEVL =
5280 × S × O

V
(1)

where, S and V denotes the average speed (miles/h) and the hourly flow rate (vehicles/h) during the time
interval. O represents the occupancy, i.e., the fraction of the time the sensor is occupied with vehicles
during a given time interval. The constant 5280 is the scalar conversion factor applied to the measurement
unit (ft). Since AEVL represents the physical dimensions of vehicles, it is robust to traffic anomalies such
as incidents or bad weather. Further, Turochy and Smith (2000); Lu et al. (2014) have shown that AEVL
can detect erroneous data records that cannot be detected using speed, occupancy, or volume individually.
Therefore, our proposed TSHM module utilizes three steps to extract anomalous sensors from large-scale
statewide AEVL data based on missing data and erroneous sensor readings:

1. Data Completeness Test: Checks whether a traffic sensor has missing data by checking data readings
for completeness.

2. AEVL Anomaly Test: Identifies suspicious records by checking whether sensors have provided un-
reasonable volume, occupancy, or speed records.

3. Temporal Pattern Anomaly Test: Checks whether sensors have provided fluctuating AEVL values
over the daily time-series data.

Figure 1 shows the flowchart of our proposed large-scale data-driven TSHM screening algorithm.

Figure 1: Workflow of proposed TSHM module

3.1. Setup
In the following subsections, N denotes the total number of sensors operating statewide and D the total

number of days during the study period. In addition, the AEVL for each sensor n on each day d per 20-
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seconds interval (say t) with a total length of s is calculated as follows, with s being 3 × 60 × 24 = 4320 for
each sensor each day.

AEVLd
n =

(
AEVLt1,d

n , AEVLt2,d
n , ..., AEVLts,d

n

)
(2)

3.2. Data Completeness Test

Long-time operation and various external reasons frequently lead to missing data issues in ITS traffic
sensors (Turner et al., 2000). Therefore, our proposed TSHM module first attempts to detect sensors with an
abnormally high missing data percentage, using completeness score (CS ) as the metric for determining each
sensor’s missing data percentage Turner et al. (2000). CS is defined as the ratio of data readings received
to the number expected. Thus, a lower CS score means a higher missing data percentage. The CS of each
sensor for each day d was calculated with s the length of the time-series data:.

CS n,d =
sNx,d

Max[sN1,d, sN2,d, ..., sNx,d]
(3)

Then, the mean and standard deviation of the completeness score for a given sensor (n) over given days
D was calculated and denoted as S n = (µCS

n , σCS
n ). The features of the resulting 2-dimensional data were

then used to determine anomalous sensors having abnormally high missing data percentages. This was
accomplished via the unsupervised k-means clustering algorithm because of its computational efficiency
(MacQueen et al., 1967; Berkhin, 2006). Here, S ∈

{
µCS

n , σCS
n

}N

n=1
defines the data points with length N, the

total number of sensors. We first assign the data points to the K cluster centroids as k1, k2, ..., k j ∈ R. In this
step, each data sample will be assigned to the cluster ci by calculating L2 distance between the point (S (n))
and cluster centroid (k j) as:

c(i) = arg min
j
‖ S n − k j ‖

2 (4)

Then, the centroids k j are recomputed and updated by taking the mean of all the data samples which were
assigned to the cluster centered by that centroid:

k j =

∑x
n=1 1{c(i) = j}S n∑x

n=1 1{c(i) = j}
(5)

The algorithm then iteratively computes c(i) and k j until convergence. In this study, we used the elbow
method (Kodinariya and Makwana, 2013) in which K is chosen by drawing the sum of squared distances
to provide the appropriate data separation and determine the optimal number of clusters K. (Kodinariya
and Makwana, 2013). Ideally, for each given day over the month, the µNi and σNi of a normal sensor are
expected to be close to 1 and 0 respectively. In other words, normal sensors are expected to have a high
completeness score (close to 1) with low variance. Therefore, after convergence of the k-means clustering,
any cluster with a centroid close to (1, 0) was labeled a normal sensor group. The rest of the clusters were
classified as abnormal sensors and assigned to anomalous sensor groups based on their different levels of
distance from the normal sensor group in terms of missing data. This was based on the assumption that
anomalous sensors with high levels of missing data are rare in the population while the majority of sensors
perform normally, a fundamental assumption of unsupervised anomaly detection (Chandola et al., 2009).
The next steps of the proposed TSHM module, the AEVL anomaly test, and temporal anomaly test, were
then applied to sensors labeled as belonging to the normal sensor group to find any further issues.
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3.3. AEVL Anomaly Test

The first step of our proposed TSHM module attempts to detect sensors with high levels of missing
data. However, sensors with a low missing data ratio (and therefore classified as normal sensors in the
data completeness test) can also suffer from abnormal, corrupted sensor readings due to calibration issues,
double-counting of vehicles changing lanes, and other noise and errors. Hence, the second step of our
proposed TSHM module, the AEVL anomaly test, attempts to detect such sensors with frequently occurring
noisy/corrupt readings.

To reduce noise in the raw AEVL data collected at 20-second to 5-minute intervals, data were first
aggregated by taking the average, similar to Yao et al. (2017). Thus, T = {t1, ..., tz} denotes the time-series
data in 5-minute intervals of length z for each sensor on a given day. Thus, the AEVL for sensor n at zth

5-minutes interval can be denoted as AEVLtz,d
n . We then represented the distribution of all AEVL value for

each sensor as a 2-dimensional feature vector (µAEVL
n , σAEVL

n ) using the aggregated AEVL records’ mean
and standard deviation.

The amount of data collected from state-wide traffic sensors is usually well beyond the capability of
traditional computing techniques. For example, 500 MB of sensor data is collected daily in the state of
Iowa, which aggregates to 15 GB monthly. A single conventional local machine cannot process such an
enormous scale of data. To alleviate this issue, we used parallel computation techniques using Hadoop
Distributed File System (HDFS) for storing the large-scale traffic data and Apache Pig Apache Pig (2018)
for processing the data using MapReduce. While traditional single computer machines cannot process the
monthly scale traffic data, usually the data processing can be completed in approximately 6 minutes. This
enables abnormal sensor identification for statewide traffic data to be handled with ease.

Our methodology for detecting sensors with abnormal AEVL records is based on the Density-based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm because of its great ability to handle
outliers. The DBSCAN algorithm can be used to discover clusters of an arbitrary shape with good efficiency
on large dataset with minimal requirements of domain knowledge to define clustering parameters (Ester
et al., 1996). DBSCAN has been used as an efficient clustering algorithm in different applications, including
both classification and outlier/anomaly detection problems((Erman et al., 2006), (Nisa et al., 2014)). The
fundamental assumption for DBSCAN in anomaly detection problems is that while normal data instances
belong to clusters, anomalous data do not belong to any cluster (Chandola et al., 2009) and can therefore
be attributed to noise or anomalies. The basic steps to identifying anomalous sensors based on the 2-
dimensional feature vector VLn = (µAEVL

n , σAEVL
n ) using DBSCAN algorithm is as follows (Schubert et al.,

2017):

1. The algorithm starts with a random point VLn = (µAEVL,n, σAEVL,n) calculated from the AEVL records
of sensor n from N number of total sensors. If the point pn is unclassified, the algorithm continues to
find neighbors based on the two basic DBSCAN functions, namely the ‘range query’ function against
other points defined as:

dist(Pi, P j) =

√
(µAEVL,Pi − µAEVL,P j)2 + (σAEVL,Pi − σAEVL,P j)2 (6)

and the ‘distance function’ with the searching radius to find neighbors defined as:

Neighborsε(Pi) = {P j ∈ DB | dist(Pi, P j) ≤ ε} (7)

If the number of neighbors is greater than minPts, they will be defined as a cluster. If point pn does
not belong to any cluster, it will be labeled as noise.
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2. After defining the distance function and the -neighborhood function, two input hyperparameters need
to be chosen: (a) minPts which defines the minimum number of neighbors to build a cluster, and (b) ε
which defines the searching radius to find any neighbors. We determined these two input parameters
based on the sorted k-dist graph technique. We first define the minPts as k, and drew the sorted k-dist
curve, with the first valley of the curve being considered the threshold to divide noise from other
points (Ester et al., 1996). This allowed us to perform iterated search on a wide range of real-world
data to determine the optimal k through reaching stability.

3.4. Temporal Pattern Anomaly Test

The AEVL anomaly test captures anomalous sensors with suspicious data readings based on high-level
aggregated AEVL data distributions, represented by µAEVL,n andσAEVL,n. However, sensors reporting abrupt
AEVL fluctuations cannot be detected using aggregated distributions. Thus, it is necessary to consider each
individual sensor’s time-series data to detect this latter type of abnormal sensor. Therefore, after severely
abnormal sensors had been captured through the AEVL anomaly test, we used the temporal pattern test to
examine the remaining sensors to flag any with frequent temporal abnormalities.

The core idea of the temporal pattern anomaly test is based on the constancy of vehicle length. Unlike
raw 20-second-interval data, aggregated 5-minute-interval AEVL moving averages reduce data readings’
inherent noise, so that AEVL values over a given time period are more stable (Wells et al., 2008). Thus,
AEVL data from a given sensor at times Ti and Ti+1 should, based on traffic operations theory, fall into the
same distribution. In contrast, if many abrupt changes in the AEVL distribution exist over a given sensor’s
time-series data for a given day, it can be labelled as a potentially anomalous sensor.

Figure 7 shows the AEVL time series plot of three consecutive sensors at a given day. The unanticipated
“spikes” in the middle sensor (Figure 7b) compared to its upstream (Figure 7a) and downstream (Figure 7c)
sensors indicate the middle sensor have recorded abnormal data, since its nearby sensors provide predictable
data. The third step of our proposed TSHM module therefore attempts to detect abnormal sensors that
report frequent abrupt fluctuations in AEVL values. Its first task is to detect “spikes” (also referred to as
changepoints) and then detect which sensors are reporting such frequent changepoints by extracting the
temporal pattern of all changepoints detected.

3.4.1. Changepoint Detection
To detect abrupt AEVL distribution changes over a given set of time-series data, we adopt changepoint

detection, also known as time-series segmentation. Sensor faults in the real world are usually random and
therefore unpredictable. Thus, we cannot know how many failures or changepoints will occur during a given
time period. Therefore, abrupt AEVL changepoint detection can be considered a multiple changepoint
detection problem based on an exact Bayesian changepoint model (detailed mathematical description in
(Fearnhead, 2006)).

In this study, we used the 5-minute AEVL records (AEVLtz,d
n ) determined from the step 2 of our TSHM

module for change point detection. Let us assume that given time series has m changepoints with their
positions referred to as τ1:m = (τ1, τ2, ..., τm) where τi < τ j for i < j and the two change points at either end
of the time series can be denoted τ0 = 0 and τm+1 = z. Note, z = 288 is the length of time series for a given
day with 5-minute aggregated data. Further, the m changepoints will split the time series data into m+1 sub-
segments and the observations of the jth sub-segment will consist of AEVL records from τ j−1 to τ j. Then, an
arbitrary prior distribution for the jth sub-segment, which is mutual for all other sub-segments with a set of
distribution parameters denoted as β. Further, the observations of any given subsegment being conditional
independent of other subsegments’ observations can also be assumed (Fearnhead and Liu, 2007). Therefore,
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the probability that two time points say (t and s) will belong to the same sub-segment can be represented
as:

P(t, s) = Pr(AEVLt:s | t, s in the same sub-segment)

=

∫ s∏
i=t

f (AEVLi | β)π(β)dβ
(8)

where, π(β) denotes the prior with the parameter β. Then the marginal likelihood of the segment at AEVLt:z
given a changepoint at t − 1 can be defined as:

Q (t) =



z−1∑
s=t

P (t, s) Q (s + 1) g (s + 1 − t) + P (t, z) (1 −G (z − t)), if t = 2, ..., z,

z−1∑
s=1

P (1, s) Q (s + 1) g0 (s) + P (1, z) (1 −G0 (z − 1)), if t = 1

(9)

where g(t) is the probability mass function of the time interval between two successive changepoints, and
g0(t) is the probability mass function of the first changepoint after 0. Thus, the G(t) =

∑t
s=1 g(s) and G0(t) =∑t

s=1 g0(s) denotes the probability distribution respectively. Then the posterior probability distribution of
the first changepoint can be derived as:

Pr (τ1|AEVL1:z) = Pr(AEVL1:z, τ1)/Pr(AEVL1:z)

= Pr(τ1)Pr(AEVL1:τ1 | τ1)Pr(AEVLτ1+1:z | τ1)Q(1)

= P(1, τ1)Q(τ1 + 1)g0(τ1)/Q(1)

(10)

Then based on τ j−1 for τ ∈ (1, z − 1), the remaining changepoints τ j can be derived as:

Pr
(
τj|τj−1,AEVL1:z

)
= Pr(τj−1 + 1, τj)Q(τj + 1)g(τj − τj−1)/Q(τj−1 + 1) (11)

In our case, the changepoints indicate changes in vehicle length distribution (i.e., a changing variance
problem see (Fearnhead and Liu, 2007)). Specifically, for the normal upstream and downstream sensor
in Figure 7, there is a higher chance to observe change points at around 5:30 AM and 11:30 PM which
are recurrent. This observation follows standard traffic flow characteristics on freeways, where the traffic
volume at night is lower than during the day. Therefore, the aggregated 5-minute interval vehicle length
moving average has larger variance at night due to a smaller sample size. In contrast, changepoints present
in abnormal sensors occur arbitrarily and erratically throughout the entire day.

This observation follows the traffic flow characteristics on the freeways, where the traffic volume during
the night time is lower than during the day time. Therefore, the moving average for vehicle length over
5-minutes aggregation will have larger variance during the night times due to smaller sample size. On the
other hand, the change points present in the abnormal sensor are arbitrary and erratic occurring throughout
the entire day.

3.4.2. Abnormal sensor detection in the temporal changepoint matrix
To detect sensors reporting an abnormal temporal pattern in the changepoint matrix, we used change-

point probabilities calculated as described above to form changepoint temporal matrices as in Figure 8.
Specifically, changepoint probabilities calculated at each 5-minute interval (tz) for sensor n at a given day d
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can be denoted as CPtz,d
n . We then accumulated the changepoint probabilities for each 5-minute interval for

all days in the study period (each month of historical data) to obtain CPtz
n as follows.

CPtz
n =

D∑
d=1

CPtz,d
n (12)

This aggregated CPtz
n was then used to create the following temporal matrix:

CPt1
1 CPt2

1 . . . CPtz
1

CPt1
2 CPt2

2 . . . CPtz
2

. . . . . .
. . .

...

CPt1
n CPt2

n . . . CPtz
n

 (13)

This change point matrix consists of two distinct data features comprised of (a) recurrent change point
pattern and (b) abrupt presence of change points by anomalous sensors. Therefore, we need to extract
enhanced anomalous data features that can be used to detect abnormal sensors reliably. This is done in
this study using Robust Principle Component Analysis (RPCA) (Candès et al., 2011). RPCA has been
successfully used in literature to detect moving objects from the video surveillance system (Bouwmans and
Zahzah, 2014). RPCA attempts to decompose the changepoint matrix CP into a low-rank temporal matrix
(L) and a sparse temporal matrix S as follows.

CP = L + S (14)

The low-rank matrix reflecting the recurrent changepoint pattern (say the background) and the sparse
temporal matrix reflecting the abrupt presence of changepoints (say the foreground) are calculated as fol-
lows:

min
L,S

rank(L) + λ ‖ S ‖0 s.t M − L − S = 0 (15)

where λ > 0 is a balancing parameter. However, this is a non-convex problem for optimization and solving
the rank and l0−norm are NP-hard. The relaxation function with the convex envelop is obtained by replacing
the l0 − norm by the l1 − norm (‖ . ‖1) and replacing rank with nuclear norm (‖ . ‖∗):

min
L,S
‖ L ‖∗ +λ ‖ S ‖1 s.t M − L − S = 0 (16)

where the λ > 0 is chosen by λ = 1√
max(m,n)

. The RPCA algorithm to decompose the raw change point tem-
poral matrix (CP) into the low-rank matrix and the sparse matrix. Then, we used the DBSCAN clustering
algorithm described earlier to detect abnormal sensors. Clustering was done using the mean and standard
deviation of the sparse temporal matrix values (S tz

n ) for each sensor obtained from RPCA.

3.5. Baseline Comparison
To verify the feasibility and accuracy of our proposed TSHM module, we compared its algorithmic per-

formance with 2 benchmark algorithms: 1) fixed-threshold based AEVL control limit method (CLM) (Wells
et al., 2008), and 2) the temporal and spatial comparison screening algorithm using multiple comparison
with the best (MCB) technology (Lu et al., 2014).

The core idea of the CLM method is based on the 95% confidence interval calculated from the overall
AEVL distribution. The CLM method first identifies the experimental time period (31 days in our study’s
example month of July 2017) and then calculates AEVL for all sites to form the AEVL distribution. Then,

9



the mean AEVL is obtained from the distribution, denoted as µcl. The upper and lower control limit bound-
aries can be obtained by µcl + 2σcl and µcl − 2σcl respectively. If the average AEVL value of any individual
sensor falls outside the control limits, the sensor will be flagged as potentially anomalous for further study.

he MCB algorithm flags anomalous sensors on the basis of temporal and spatial information by com-
paring AEVL in three steps: (1) Data aggregation: Individual AEVL data points are grouped into 30-minute
intervals for each sensor and each lane, and represented by the mean AEVL and variance. (2) Within station
comparison: MCB are performed between different lanes in the same station, using the confidence interval
created by MCB to check if there is a statistically significant difference between the target lane and best
max lane. (3) Between station comparison: MCB are performed between nearby stations uses the fuzzy
logic decision tree to label potential errors when target lane/station data are significantly higher/lower than
that of comparison lanes/stations.

4. Results

Traffic sensor data were collected from Iowa’s 338 freeway radar sensors statewide from April–December
2017. These radar sensors use digital radar beams (virtual lines) to record passing vehicles’ speed, occu-
pancy, volume, vehicle type, etc. The volume of each month’s sensor data aggregated at 20-second intervals
is approximately 15 GB of distributed storage (via a Hadoop Distributed File System or HDFS). In this
paper, we show sample results and test our proposed module against the two benchmark algorithms using
sensor data from a sample month (July 2017), utilizing our remaining data for sensitivity and stability anal-
ysis. In real-world applications, however, our module could be implemented with a sliding window of 1
month to detect sensors functioning abnormally over the last month. We next discuss the results of testing
our proposed algorithm on aggregated data for each month of the study period via our TSHM module’s 3
steps: (a) data completeness check, (b) AEVL anomaly check, and (c) temporal pattern anomaly check. We
then compare our proposed algorithm against the benchmark algorithms described previously.

4.1. Data Completeness Test Results

The first step of our proposed TSHM module is the data completeness test to detect sensors with ab-
normally high missing data percentages. As discussed in Section 3.2, this uses K-means clustering based
on each sensor’s completeness score (CS ) mean and standard deviation. For 8 of the 9 months of the study
period (April–December 2017), the elbow method described in Section 3.2 found the optimum number of
clusters to be 3, while for August 2017, it found the optimum number of clusters to be 2. Figure 2 shows the
clusters from the sample month July 2017. These 3 clusters can be labelled based on missing data severity
as: normal sensor, abnormal sensor level 1 and abnormal sensor Level 2 based on their severity of data
missing problem. In other words, the cluster with the mean CS closest to 1 and standard deviation close to
0 (i.e., S n = (µn, σn) ≈ (1, 0)) can be labelled as normal and the other two labelled as anomalous. Thus, in
July 2017, Iowa had 299 operating freeway radar sensors, 36 of which were abnormal.

Figure 3 shows heatmaps of the 3 missing-data-percentage-based clusters from July 2017. As can be
seen from Figure 3a, normal sensors rarely suffer missing data issues, while level 2 abnormal sensors have
an exceptionally high percentage of missing data (Figure 3c), Although level 1 abnormal sensors’ missing
data rates are not excessive (Figure 3b), still they justify manual inspection and repairs. (It should be
mentioned that although our proposed clustering-based method can automatically classify sensors as normal
vs. abnormal, traffic operations agencies could also define anomalous sensors based on their individual
requirements, choosing based on the cluster centers obtained the S n = (µn, σn) for proposed method uses to
identify abnormal sensors.)

10



Figure 2: Data completeness test result on the sample month of July

Figure 3: Sample missing data percentage heatmap of (a) Normal sensor, (b) Abnormal Sensor - Level 1, and (c) Abnormal Sensor
- Level 2 from the data completeness test

It should be noted that sensors classified as normal in this data completeness test can nonetheless suffer
from abnormal/atypical recorded values. Such “normal sensors” were therefore passed through step 2 of
our proposed TSHM module, the AEVL anomaly test.

4.2. AEVL Anomaly Test Results

Sensors with no major missing data issues can still be abnormal by recording atypical sensor values.
Therefore, the AEVL anomaly test, step 2 of our proposed TSHM module, uses the DBSCAN algorithm
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described in Section 3.3 to detect sensors recording abnormal AEVL values. Figure 4 shows abnormal
sensors detected in the sample month of July 2017 based on the 2-d AEVL distribution (µAEVL

n , σAEVL
n ).

Out of the 263 sensors classified as normal sensors based on data completeness test for July 2017, 13 were
classified as abnormal based on the AEVL anomaly test.

Figure 4: AEVL anomaly test result for the sample month of July, 2017

It can be seen in Figure 5, where we plot the 2-d completeness score S n = (µn, σn) obtained from
step 1’s data completeness test with the sensor labels obtained from step 2’s AEVL anomaly test, that the
abnormal sensors detected in step 2 cannot be detected using step 1’s CS feature vector S n, since the sensors
identified in step 2 didn’t have any missing data issues. This demonstrates that both the data completeness
and AEVL anomaly tests are required, since each identifies abnormal sensors having different issues that
cannot be detected using a single test.

To illustrate the difference in AEVL distributions observed in anomalous vs. normal sensors, Figure
6 shows the different types of AEVL cumulative distribution function (CDF) plots reported by three sam-
ple anomalous sensors along with their adjacent upstream (u/s) and downstream (d/s) “normal sensors.”
In Figures 6a and 6b, the abnormal sensors reported lower and higher means, respectively, compared to
their adjacent u/s and d/s sensors. In contrast, the abnormal sensor shown in Figure 6c reported higher
variance compared to its adjacent sensors. Such CDF visualization of abnormal sensors helps justify our
proposed method of detecting sensors reporting abnormal sensor readings by clustering AEVL distributions
((µAEVL

n , σAEVL
n ))

4.3. Temporal Pattern Anomaly Test Results
The temporal pattern anomaly test detects sensors showing abrupt fluctuations or “spikes” in AEVL

time-series values by using the Bayesian changepoint detection algorithm, as described in Section 3.4.1, and
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Figure 5: Completeness Score plots for all sensors in step 1 and abnormal sensors in step 2

(a) (b) (c)

Figure 6: Sample CDF plots of abnormal sensor with their upstream(u/s) and downstream(d/s) sensors for abnormal sensor with:
(a) low mean, (b) high mean, and (c) high variance

RPCA to denoise and enhance the changepoint matrix as described in Section 3.4.2. AEVL as a surrogate
for vehicle length is not expected to be affected by time of day, unlike volume or speed. Therefore, frequent
fluctuations in AEVL values suggest sensor abnormality.

Figure 7 shows the raw AEVL values and corresponding changepoint probability distributions of three
consecutive sensors on a sample day. It can be seen that the middle sensor (Figure 7b) shows a significant
number of spikes in AEVL values, resulting in an increase in changepoint probabilities (Figure 7e) compared
to it’s u/s and d/s sensors. Each sensor’s changepoint temporal matrix was formed by accumulating its
changepoint probability at each 5-minute interval over the days of the study as described in Section 3.4.1.
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(a) Upstream sensor (b) Middle sensor (c) Downstream sensor

(d) Upstream sensor (e) Middle sensor (f) Downstream sensor

Figure 7: AEVL time series distribution of a sample day for (a) Upstream sensor, (b) Middle anomaly sensor, (c) Downstream
sensor and changepoint probability distribution for the same day for the (d) Upstream sensor, (e) Middle anomaly sensor, (f)
Downstream sensor

Figure 8 shows sensors in a sample plot following their actual spatial order on the freeway. In the sparse
matrix shown in Figure 8c, we can see sensor 4 shows abrupt changes in AEVL over the study period, while
its adjacent sensors are following the predictable temporal pattern.

(a) Raw CP matrix (b) Low rank CP matrix (c) Sparse CP matrix

Figure 8: Sample RPCA Decomposition: (a) Raw CP matrix, (b) Low rank CP matrix, (c) Sparse CP matrix
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Then, similarly to the AEVL anomaly test, we used DBSCAN clustering algorithm to detect the anomaly
sensors by calculating each sensor’s sparse matrix mean and standard deviation as a 2-d feature vector. Fig-
ure 9 shows the July 2017 sample month’s clustering results in which 8 sensors (2.04%) were classified
as abnormal. In Figure 10, we visualize the different characteristics of one randomly selected anomalous
sensor and one randomly selected normal sensor using a heatmap of their raw AEVL data It can be seen
that compared with the normal sensor (Figure 10a), the abnormal sensor (Figure 10b) shows more “spikes”
or temporal fluctuations, resulting in it having been flagged as anomalous.

Figure 9: RPCA sparse temporal matrix clustering

Figure 10: RPCA Sparse Matrix Clustering heatmap

Like before in Figure 5, in Figure 11 we verify the necessity of our TSHM modules’s step 3 temporal
pattern anomaly test by comparing its results with our step2 AEVL anomaly test.Specifically, we plot the
2-d AEVL distribution (µAEVL

n , σAEVL
n ) obtained from step 2 with the labels of the sensors obtained from

step 3. Again, it can be seen that the abnormal sensors with frequent AEVL fluctuations detected in step 3
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cannot be identified in step 2, justifying that our temporal pattern anomaly test is required.

Figure 11: AEVL plots for all sensors in step 2 and abnormal sensors in step 3

4.4. Baseline Comparison

In this section, we compare our proposed TSHM module with the baseline CLM and MCB methods
described in Section 3.5.

4.4.1. CLM Comparison
The CLM method attempts to detect abnormal sensors based on AEVL values. Since CLM method

doesn’t deal with any missing data issues, so we don’t use the results obtained from our step 1 (data com-
pleteness test) in this comparison and only rely on the remaining two steps (AEVL anomaly test and tem-
poral pattern anomaly test) since these also use AEVL as the primary variable. Figure 12 shows the com-
parison’s results for the sample month July 2017. All anomalous sensors detected using the CLM method
(3.04% or 8 out of 263) were also labelled anomalous by our method, but our proposed method also labelled
an additional 13 sensors (4.94%) as anomalous, 5 in step 2 and 8 in step 3.

Figure 13 shows heatmaps of the raw AEVL values for the study month (July 2017) for a sample normal
sensor and three different abnormal sensors. Figures 13a and 13b show heatmaps for sample sensors labeled
normal and abnormal sensor, by both CLM and our proposed method. Figures 13c and 13d show AEVL
heatmaps of sample sensors detected only by our proposed TSHM module (in step 2 and 3) that reported
either intermittent abnormal AEVL values or frequent AEVL fluctuations, thereby justifying the efficacy of
the proposed method.
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Figure 12: Clustering comparison with CLM method

Figure 13: Sample monthly AEVL heatmap of July, 2017 for sample (a) normal sensor and (b-d) abnormal sensors
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4.4.2. MCB Method
The MCB algorithm requires sensors to be spatially ordered. However, generating the accurate spatial

ordering of all sensors in Iowa is time-consuming. Therefore, we selected 4 different routes for evaluation,
namely I-235 EB (with the 6 sensors A1–A6), I-35 NB (with the 6 sensors B1–B6), I-80 EB (with the 7
sensors C1–C7), and I-74 NB (with the 7 sensors D1–D7). Each route’s head and tail sensors were ignored
in the evaluation, since they do not have the u/s and d/s sensors required for MCB comparison. Figure 14
shows the remaining 18 sensors’ normal/abnormal status according to our proposed method vs. MCB. Our
proposed method labels 7 of these as anomalous (A3, A5, C2, C5, D3, D4, and D5), whereas MCB labels
only 4 (A5, B3, C2, and C5) that have considerably higher missing data and potential error percentages
as anomalous (under our assumed threshold of 20%, since Lu et al. (2014) did not propose any definite
threshold for labelling anomalous sensors based on error percentages).

Figure 14: MCB algorithm based error percentages of sensors with labels from the proposed method

The greater efficacy of our proposed TSHM module compared to the MCB algorithm is additionally
supported by Figure 15 raw AEVL heatmap in that:

• Both the MCB algorithm and our proposed method detect as abnormal the AEVL records for sensor
A5, with its high missing data percentage observable in Figure 15a AEVL heatmap, as well as sensors
C2 and C5 (cf. Figure 15c), with their substantially different AEVL both globally and with respect to
their upstream (u/s) and downstream (d/s) sensors.

• The MCB algorithm labels sensor B3 as abnormal due to high potential error rate, but visual exam-
ination of B3’s raw AEVL heatmap in Figure 15b shows no substantial AEVL abnormality. Further
investigation reveals B3 and its nearest neighboring sensor B4 (2.1 miles away) to be located at two
freeway interchanges where entering and exiting vehicles apparently affect vehicle composition and
distribution (e.g., the B3 and B4 average hourly truck percentages were 9.34% and 16.12%, respec-
tively). Therefore, the MCB method appears to be overly sensitive to vehicle composition varying
between nearby locations.

• Our proposed TSHM module’s step 3 temporal pattern anomaly test captures substantial temporal
AEVL fluctuations (cf. Figure 15d raw AEVL plot for sensor D3), which led our method to report as
abnormal the sensors D3, D4, and D5 that the MCB algorithm classifies as normal.
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Figure 15: AEVL heatmap of (a) A5, (b) B3, (c) C2, and (d) D3

5. Conclusion

This study proposes a large-scale, data-driven traffic sensor health monitoring (TSHM) module involv-
ing massively parallelizable data processing techniques that make it feasible to deploy over large traffic
networks. Our proposed TSHM module can be compared with sieving analysis, where each step identifies
distinct sensor abnormalities, enabling traffic management authorities to take the necessary steps to resolve.
First, our module’s data completeness test captures sensors with abnormally high missing data rates, provid-
ing a data completeness score (CS) that justifies assigning different levels of missing data severity. Second,
reduced 2-d features from each sensor’s aggregated AEVL distribution are used to detect abnormal sensors
based on DBSCAN clustering’s anomaly detection logic. (We used the AEVL metric since not only can
it capture the variability of all three basic traffic variables (speed, density, and volume) simultaneously,
but also it is a surrogate of vehicle length robust to daily or seasonal traffic variations and other external
factors like inclement weather or traffic incidents.) Third, our novel temporal-pattern-based anomaly de-
tection method utilizes the AEVL assumption of constancy in the vehicle length distribution by introducing
Bayesian changepoint detection in the temporal AEVL matrix to detect sensors in the data stream reporting
abnormally frequent spikes/fluctuations that suggest sensor problems requiring further attention.

One major challenge in abnormal sensor detection is the difficulty in obtaining groundtruth labels. Due
to the absence of any explicit definition of abnormal sensors in the literature, this study has identified abnor-
mal sensors by plotting sensor data along two different feature dimensions to identify points of agreement.
For example, step 2 of our proposed TSHM module uses aggregated AEVL records to detect abnormal
sensors, but we also verify this cumulative feature vector’s abnormality by comparing apparently abnor-
mal sensors’ CDF plots of with that of their adjacent u/s and d/s sensors. Similarly, we justify abnormal
sensors identified by our step 3 temporal pattern anomaly test by demonstrating their raw AEVL heatmaps
also show frequent spikes. Finally, we compare our proposed module with two benchmark algorithms, the
CLM and MCB. These baseline comparisons show our proposed method can successfully identify not only

19



typical sensor error types, such as missing data or abnormal records, but also advanced error types such as
frequent abrupt sensor data fluctuations. In addition, the efficacy of our proposed method is demonstrated in
how, unlike the MCB algorithm, our method can successfully identify such abnormalities even for isolated
or consecutive abnormal sensors.

However, our algorithm is an offline method that builds its model using historical traffic data. In future,
our method can be extended to incorporate real-time sensor health monitoring to enable instant detection of
abnormal sensors. Also, our proposed TSHM module’s performance and reliability can likely be improved
using traffic information from other sensor types (e.g., probe and camera data).
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