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A B S T R A C T 

The effective performance of arterial corridors is essential to community safety and vitality. 
Managing this performance, considering the dynamic nature of demand requires updating traffic 
signal timings through various strategies. Agency resources for these activities are commonly 
scarce and are primarily by public complaints. This paper provides a data-driven prioritization 
approach for traffic signal re-timing on a corridor. In order to remove any dependence on available 
detection, probe-based data are used for assessing the performance measures. Probe-based data are 
derived from in-vehicle global positioning system observations, eliminating the need for installing 
on-field traffic infrastructure. The paper provides a workflow to measure and compare different 
segments on arterial corridors in terms of probe-based signal performance measures that capture 
different aspects of signal operations. The proposed method can serve as a tool to guide agencies 
looking to alter their signal control. 

The methodology identifies a group of dynamic days followed by evaluation of travel rate based 
upon non-dynamic days. Dynamic days represent the variability of traffic on a segment. 
Performance measures on non-dynamic days include Median Travel Rate, Within-Day Variability 
of travel rate, between-days variability of travel rate Minimum Travel Rate Dispersion, and two 
variables which include Overall Travel Rate Variabilities. Consequently, a corridor having high 
number of dynamic segments along with poor performance during normal days would be a 
candidate for adaptive control. A case study was conducted on 11 corridors within Des Moines, 
Iowa where Merle Hay Road and University Avenue were identified suitable for adaptive control. 
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1. Introduction 
 

Transportation agencies install traffic signals in order to optimize traffic flow, reduce crash 
frequency, and prioritize particular roadway user type or movement (Chandler et al., 2013). 



Federal Highway Administration (FHWA) states that the operation and performance of the 
300,000 signals in the United States (US) are addressed predominantly on the basis of citizen 
complaints (FHWA, 2017). Recognizing that a complaint-driven process is inefficient, many 
transportation agencies have sought objective methods for identifying and prioritizing corridors 
that require signal re-timing or the implementation of advanced signal control systems.  

Two-thirds of all distance driven each year are on roadways controlled by traffic signals. Poor 
traffic signal timing is a major cause of traffic congestion and delay (Morales, 1995). Crashes are 
pervasive with signalized intersection operations. National Motor Vehicle Crash Causation Survey 
asserts that nearly 19% of the crashes occurred on signalized intersections which create points of 
conflict (Choi, 2010). Another study found that almost 67% of fatalities occur on arterial corridors 
(Brozen & Shockley, 2016). The National Traffic Signal Report Card (NTSRC) shows that 
improvements are being made as the overall score has increased from a letter grade of D- in 2005 
to D+ in 2012, but a lot of issues still remain to be addressed (National Transportation Operations 
Coalition, 2012). The report card showed that the two lowest scoring categories were management 
which secured D in traffic monitoring and data collection which secured F. This paper identifies 
measures to mitigate these problems. 

In order to maintain and improve the traffic signals, they are to be controlled in a sound and 
appropriate way to “move people through an intersection safely and efficiently” (Koonce et al., 
2010). There are three primary operational modes for traffic signals: pre-timed control, semi-
actuated control, and fully actuated control (Koonce et al., 2010). Improving these types of signals 
need periodic signal retiming (Curtis, 2017; Gordon, 2010). The signal retiming is invoked through 
the following ways (Gordon, 2010): 

• Major changes in the land use pattern. 
• Public requests 
• Traffic conditions like oversaturation and spillback of queue. 
• Detector or traffic camera video which suggests that there are changes in volume and 

congestion. 
 Retiming involves minimizing a delay-based objective function or maximizing arterial 

throughput through progression (Gordon, 2010). These assumptions do not always represent the 
real scenario in the field (Day, Brennan, et al., 2010) and are constrained by technical and 
institutional difficulties (Gordon, 2010). To circumvent these situations, the Adaptive Signal 
Control Technology (ASCT) came into existence (Curtis, 2017).  

The ASCTs tend to maximize the capacity of the existing system based upon the information 
collected from the field to reduce cost of the system users and the operating agencies. They are 
useful in locations with variations in traffic rather than repetitions in traffic (Stevanovic, 2010). 
They have been reported to reduce travel times by 35–39% (Sims & Dobinson, 1980), reduce stops 
by 28–41% (Hicks & Carter, 1997), and also reduce crashes by 35% (Anžek, Kavran, & Badanjak, 
2005). However, they involve a high initial cost for installation – both in field and at traffic 
management center (Stevanovic, 2010). The initial tune up and additional sensors tend to make 
the task tedious and calls for maintenance. The typical cost of implementing adaptive control 
ranges from $6,000 to $65,000 per intersection (Sprague, 2012; Zhao and Tian, 2012) which 
restricts a city-wide implementation. Even with higher costs, one-third of the ASCT has been 
found to be problematic in oversaturated traffic conditions (Stevanovic, 2010). A few cases have 
been reported where the ASCT has been removed from a corridor as it showed deterioration in 
performance due to non-ideal sensor performance, lack of trained staff, or inability of adaptive 
algorithms to respond to the site traffic conditions (Stevanovic, 2010). Although under an ideal 



scenario, a city-wide ASCT could provide a more effective solution. Only a few cities have 
implemented city-wide adaptive control due to current costs and sensor dependencies and is 
common to find ASCT on a few selected corridors. This paper provides the methodology to 
evaluate a corridor in terms of need for ASCT and how to prioritize the remaining signals for re-
timing. It focuses on identifying locations that require automatic movement of split times to 
minimize public complaint. 

When data are not accessible or require manual collection, significantly increases the cost of 
retiming (FHWA, 2017).  Performance evaluation has been done using two different data source 
categories – infrastructure dependent data sources Bluetooth, cameras, loop detectors, or any kind 
of fixed/mounted sensors and non-infrastructure dependent data sources: probe-based data. 

Infrastructure dependent methods can be divided into two categories - Automated Traffic Signal 
Performance Measures (ATSPMs) which require high-resolution data from the traffic signal 
controller and sensor data which involve mounted sensors like cameras and Bluetooth. The ability 
to extract ATSPMs is only available in the newer traffic signal controllers bought within the last 
few years. Table 1 presents the performance measures obtained using high-resolution traffic signal 
data. Apart from ATSPMs, travel time has been shown to be a consistent measure of corridor 
performance (J. Li, van Zuylen, & Wei, 2014). Several automated travel time determination 
methods have been developed, including anonymous address matching, cellular phone subscriber 
identity matching, and automatic license plate number matching (Singer et al., 2017,  
Venkatanarayana, 2017, Quayle et al., 2010, Day et al., 2012). Many of these are based on vehicle 
re-identification using paired sensors placed at upstream and downstream of traffic flow. These 
have proven reliable in daily service, but require installation and maintenance of roadside sensors 
and tend to represent biased sample of traffic stream (Chitturi et al., 2014, Shaw and Noyce, 2014). 
Other drawbacks of controller-based data include underestimation the traffic volume if the queue 
extends too far beyond the farthest-upstream loop (Smaglik et al., 2007b, Li et al., 2014) and the 
difference in detection rates at Bluetooth stations based upon a vehicle’s position (Vo, 2011).  

Table 1 
Methods to measure performance measures of arterial corridors and intersections. 
Performance Measure Methods used to measure 
Delay Stop bar and advanced detectors* (Sharma 

and Bullock 2008; Sharma et al. 2007). 
Video recording* (Sharma & Bullock, 
2008). High-resolution event data* (Day 
& Bullock, 2010). 

Number of stops Video recording* (Fernandes et al., 2015). 
Connected Vehicle+ (Argote-Cabañero, 
Christofa, & Skabardonis, 2015). 

(Maximum) queue length Stop bar and advanced detectors* (Sharma 
and Bullock 2008; Sharma et al. 2007). 
Video recording* (Sharma & Bullock, 
2008).  Stop bar and advanced detectors* 
(Sharma and Bullock 2008; Stop bar and 
probe data combined# (Comert, 2013). 
Probe data+ (Comert & Cetin, 2009) 



Arrival Type, Arrival rate on 
green, Degree of intersection 
saturation, Volume/capacity ratio, 
Level of progression,  Split 
failure 

Stop bar and setback detectors* (Smaglik, 
Bullock, & Sharma, 2007). High-
resolution event data* (C M Day and 
Bullock 2010; Christopher M Day, 
Sturdevant, and Bullock 2010;  
Christopher M. Day et al. 2014) 

*  infrastructure dependent; + non-infrastructure dependent; # combined 
  
The use of non-infrastructure dependent GPS-based probe data overcomes some of these 

limitations since acquiring the data requires no roadside infrastructure, and the data aggregation 
and de-identification ensures that all the privacy concerns are appropriately addressed. Probe-
based signal performance measures have been reported to have higher accuracy rate than the 
controller based data (Alhajri, 2014; Lattimer and Glotzbach, 2012;  Li, 2013). They are also used 
for determining measures as noted in Table 1. They are used to investigate relationships between 
travel time and travel time reliability for arterials (Remias et al., 2013; Haghani et al., 2010; Hu et 
al., 2015).  

While travel time provides an excellent proxy of traffic conditions within one segment, the 
measurement has inherent aggregate-level comparison problems (Day et al., 2014). Hence the 
travel rate is used for the analysis. Mathematically, travel rate is inverse of speed. Travel rate can 
be easily displayed using a cumulative distribution function (CDF) (Mathew, Krohn, Li, Day, & 
Bullock, 2017). 

In a study, the performance of the arterial corridors was ranked based upon composite score 
derived from normalized travel rate (Day et al., 2015) along arterial corridors in Indiana. Neither 
did they remove any dynamic days when the travel rate was significantly different than the normal 
days, nor did they group the intersections based upon similar geometric properties (like traffic 
volume) which might have skewed the rankings. 

The present work addresses the above shortcomings by grouping and then evaluating the 
performance of the segments under similar geometric properties. This paper presents a massively 
parallelizable technique that can process large scale data (hundreds of gigabytes) within a few 
minutes and compute performance of any number of segments that make up a corridor. The 
analysis starts with empirical CDF plots of travel rate which are used to evaluate the performance 
of arterial corridors using the following measures: 

• Identifying dynamic days using CDF plots. This ensures that all dynamic days are removed. 
A large number of dynamic days mean that traffic is not repetitive and that ASCT could be 
a viable alternative. Where appropriate, dynamic days can be evaluated separately to 
identify the extent of the anomalies and potential interventions relevant to unusual 
situations.  

• Evaluating the travel rate metric for normal days uses Median Travel Rate (MTR), Within-
Day Variability (WDV) of travel rate, between-days variability of travel rate (Minimum 
Travel rate Dispersion (MTD), and two Overall Travel rate Variabilities (OTV_POLY and 
OTV_LINEAR)). The final prioritization threshold is based upon dividing the segments by 
geometric characteristics – annual average daily traffic per lane and intersection density. 
On these 5 parameters, a principal component analysis was conducted to identify segment 
performance as good or poor. 



On these two measures, the need for adaptive control is determined. If a corridor is highly dynamic 
and performing poorly on normal days, indicates locations where adaptive control should be 
implemented first, followed by the ones which are performing poorly only on normal days. 

The poor overall grade on NTSRC is a reflection of deficient signal retiming (National 
Transportation Operations Coalition, 2012). The measures used in this study will serve as a 
guideline to the different agencies who can evaluate the performance regularly, identify the 
problematic segments along corridors, and come up with quicker solutions, leading to better 
monitoring of the traffic signals which would the overall score in future evaluation. 

The rest of the paper is broadly divided into three categories. First, it provides the details of 
the data used in this study and methodology adopted to identify performance of the segments. 
Then a case study is computed using this methodology to compare segments within the Des 
Moines, Iowa metro. Finally, a conclusion is drawn based upon the results observed for the case 
study. 

2. Data and Methodology 
2.1 Data Description and Data Reduction 

This analysis was considered across 11 major arterial corridors within the Des Moines 
metropolitan area (refer Figure 1) consisting of 2nd Avenue, 22nd Street, Ashworth Road, Fleur 
Drive, Grand Avenue, Hickman Road, Jordan Creek Parkway, Merle Hay Road, Mills Civic 
Parkway, Southeast 14th Street, and University Avenue. The corridors were made up of 300 
segments of which 51 were under existing adaptive control (22nd Street, Jordan Creek Parkway, 
Mills Civic Parkway, and University Avenue). Time period was from 5 am to 10 pm as at night 
there is low probe count and the adaptive control does not function during the overnight hours.  

 
 

 

Figure 1. Location of the corridors in Des Moines. 

Each corridor included multiple segments, defined by the probe data provider, ranging from 
0.32 to 2.4 kilometer in length. The probe data for each segment included the average vehicular 



speed per direction per minute. The real-time data consists of that duration when there was 
presence of vehicle(s) on that road segment. These data were acquired from a commercial provider 
(INRIX) and the real-time data covered approximately 34% of the total duration.  

Maintaining and analyzing the large dataset of 150 GB per month requires networked computers 
and parallel computational processing techniques. A distributed file system, Apache Hadoop was 
used for storing the information with the data sets stored in the form of smaller chunks to improve 
querying. Map-reduce codes were written in Apache Pig to extract the percentile values of speed 
for each segment. The parallelized computation ensured that filtering, mapping and reducing one 
month’s worth of data, from the entire Iowa dataset, could be completed within 10 to 12 minutes.  

 
2.2 Methodology 

This section defines the methodology used as summarized in Figure 3. Raw data were acquired 
and converted to CDF plots for identifying the dynamic days on different segments. The dynamic 
days were used to identify dynamic corridors (arterials having a high percentage of dynamic day 
segments). After that, the remaining normal days were used to evaluate the performance measures 
in terms of MTR, WDV, OTV_POLY,  OTV_LINEAR, and MTD. Using these, Principal 
Component Analysis (PCA) was carried out to characterize the behavior of each segment which 
helped to identify the corridors where the adaptive control is necessary. Based on this 
methodology, agencies can adopt their own thresholds by reproducing the methodology or they 
can directly use the thresholds obtained from the case study.  

 

 

 

Figure 2: Flowchart of the methodology. 
 



2.2.1 Identifying dynamic days using travel rate CDF plots 
The variation of speed in a day can be represented as shown in Figure 4(a). For evaluating the 

daily performance, it was converted to a CDF plot. A CDF plots the probability of speed below a 
certain value. For example, if one says the 60th percentile is 34mph (refer to point ‘a’ in Figure 
4(b)), implies that the probability of traveling below 60% of times the speed lower than 34 mph 
was observed at this segment. 

Since they could not be added together to evaluate performance of entire corridor, speed CDFs 
were converted into travel time CDFs by dividing travel speeds with length of segments. This 
transformed point ‘a’ on Figure 4(b) into marked ‘a’ on Figure 4(c). 

The travel time CDF cannot compare segments of unequal length. Thus, they were normalized 
by the length of the segment to obtain travel rate CDF plots. Fig 2(d) represents the travel rate 
CDF corresponding to the travel time CDF shown in Fig 2(c). The travel time CDF looks identical 
to the travel time CDF except for the values plotted on the X-axis. Further, point marked ‘a’ on 
Fig 2(c) got translated to an identical point in Figure 4(d).  

 
Analysis was only conducted for those days that had at least 75 minutes of real-time probe data. 

In order to appropriate peak period data, days which had at least 30 minutes of data during each of 
the peak periods (6am-9am and 3pm-6pm during morning and evening respectively) were used for 
the analysis. For justifying these durations, segments lying on the Fleur Drive corridor were 
randomly chosen. Two filters were applied – variation of total minutes in a day (50, 75, and 100 
minutes) and variation of the peak hour duration (30, 45, and 60 minutes). It was determined that 
there was no change in number of days for the total minutes of 50, 75, and 100 minutes. In the 
case of peak hour duration, the Kolmogorov–Smirnov test failed to show any significant difference 
between the three sets of data of 30, 45, and 60 minutes. This meant that the values chosen for the 
analysis were justified. This filter removed approximately 122 days per segment from the analysis. 

 

 



Figure 3. Plots of (a) Speed Variation, (b) Cumulative Distribution Plot for speed, (b) Cumulative Distribution Plot 
for travel time, and (c) Cumulative Distribution Plot for travel rate for a segment throughout a day. 

Subsequently, the dynamic days were identified for each segment. The purpose of detecting 
dynamic days is to remove inaccurate travel rates from the analysis and to identify the necessity 
of a demand-driven signal re-timing. Dynamic days were abnormal days when the travel rate 
differed from normal due to events such as special events, construction, or adverse weather. The 
detection of dynamic days started with the daily travel rate CDF plots for each segment. Figure 
5(a) displays an example plot of the travel rate CDFs for the northbound direction of the Water 
Works Park on the Fleur Drive corridor. Plots of different segments, on the same corridor and 
same direction, were further merged together to create a travel rate plot representative of the entire 
corridor. The principle of commonotonicity was applied to achieve the resultant plot. The principle 
states that for monotonically increasing functions, resultant nth percentile can be obtained as: 

𝑅𝑅𝑅𝑅𝑠𝑠𝑛𝑛 = ∑ 𝑛𝑛(𝑗𝑗)𝑗𝑗=𝑝𝑝
𝑗𝑗=1            (1) 

where Resn represents the resultant nth percentile of the segment obtained by adding all the nth 
percentiles for p days. 



 

Figure 4. Plots showing (a) Daily CDF, (b) CDF plot of Representative day, (c) Difference between example day 
and representative day on CDF plots, (d) Normal and Dynamic days on CDF plots, and (e) Average 5-minute speed 

distribution for normal and dynamic days for Water Works Park, Fleur Drive.  

Previous studies show that the above method has an error of 6% (Chen, Wang, & van Zuylen, 
2010) for travel time. Applying this on the independent and identical plot for different days, for 
the same direction of a corridor, the representative plot for that direction of the corridor was 
obtained as shown in Figure 5(b) for the northbound direction of Fleur Drive. In order to compare 
the daily CDF plots to the representative CDF, the horizontal difference of the fifth percentiles (0, 
5, 10, and so on) (Holland, 2007) between the representative day and each day were evaluated as 
shown for an example day on Figure 5(c).  The mean and standard deviation of these differences 
were used as measures of dispersion. These measures were then utilized to evaluate the Local 



Outlier Factor (LOF) score for each day.  The details of the algorithm for Local Outlier Factor can 
be found in (Breunig, Kriegel, Ng, & Sander, 2000).  

This was used to determine an elbow method cutoff which located the “higher than average” 
LOF values. Figure 5(d) shows the dynamic and normal days for a segment. A separate threshold 
was used in addition to elbow method to determine the cutoff value. A comparison of normal days 
and dynamic days can be visualized by the average 5-minute heat map plotted for the segment in 
Figure 5(e). Both Figure 5(d) and Figure 5(e) can be used to demonstrate that some of the dynamic 
days were mainly caused due to heavy congestion.  

Based on the above algorithm, dynamic days were identified. A segment was defined as a 
dynamic segment when it had high volume of dynamic days with the value determined using the 
elbow-cutoff point and fixed LOF value. Dynamic segments were used to identify dynamic 
corridors which had one or multiple dynamic segments. 
2.2.2 Evaluating the travel rate metric for the normal days of the segment  

This step defines the performance measures obtained from the travel rate CDF plots for each 
segment. First, the normal days were derived for each segment from the previous analysis. Then 
the overall nature of the CDF plots were described based on their location (MTR), spread (WDV), 
and the overall shape (OTV_POLY, OTV_LINEAR, and MTD). These measures are further 
defined as: 

• MTR – It represents the location measure of the CDF plots. It was the median time 
required to cross one mile of the segment. MTR was obtained as the 50th percentile of 
the median of each day’s travel rate. The median travel rate is shown as point “a” in 
Figure 8 below. 

• WDV – This represents the spread of the CDF plots. The WDV was the difference 
between the median 95th and 5th percentiles of a segment and reflects a segment’s daily 
variability. High WDV values meant that there was significant fluctuation in travel rate 
for that segment. The WDV for a segment is shown as point “b” in Figure 8 below. 

Figure 5. Plot showing the MTR as point “a” and WDV as point “b”. 

 



• OTV_LINEAR, OTV_POLY, and MTD – The variation in the shape of the CDF plots 
were captured using three measures. In order to obtain them, first, a 90% confidence 
envelope was obtained. This was done by joining the 5th and 95th percentiles of each 5th 
percentile (0, 5. 10, … 100) values of the travel rate CDF data as shown in Figure 9. 
Next, horizontal intermediate quantile differences were calculated at each 5% interval 
for twenty-one percentiles (0, 5, 10, and so on) (Holland, 2007) and a second-degree 
polynomial equation (quadratic) was fitted to the resulting data points as shown in Figure 
9. Thus the points which are ‘x’, ‘y’ and ‘z’ change accordingly from Figure 9(b) to 
Figure 9(c). The equation is of the form: 

𝑌𝑌 = 𝑂𝑂𝑂𝑂𝑂𝑂_𝑃𝑃𝑂𝑂𝑃𝑃𝑌𝑌 ∗ 𝑥𝑥2 + OTV_LINEAR ∗ 𝑥𝑥 + 𝑀𝑀𝑂𝑂𝑀𝑀           (2) 

Where, the coefficient OTV_POLY represented the quadratic nature of the change of 
quantiles, the coefficient OTV_LINEAR represented the linear change of quantiles, 
and MTD referred to the variability for the fitted travel rate at the 0th percentile.  

OTV_POLY and OTV_LINEAR can have different combinations in the real case 
scenario. However, in the analysis, the former was always seen to be positive, the 
latter was seen to be negative, and the focus of the parabolic shape obtained was 
within 0 to 100. This gave rise to Figure 9(c). This meant that the difference of the 
percentile would first decrease for some percentile values and then keep on increasing. 
The coefficient MTD represented the variation of the travel rate during free flow 
conditions. High values of MTD meant that the free flow variation in travel time was 
significantly high. 



 

Figure 6. Figures showing (a) the 95% and 5% confidence lines and the 5% envelope, (b) The difference between 
the 95th percentile and the 5th percentile lines and c) The quadratic plot using the difference of the 95th and 5th 

percentile lines color-coded by the percentile values. 

Using these five parameters (MTR, WDV, OTV_POLY, OTV_LINEAR, and MTD), the poor 
performing segments were identified. Since each segment had variability in traffic flows and 
number of intersections, they had to be divided based upon the following geometric parameters: 
Annual Average Daily Traffic per lane (AADT density) and number of intersections per mile of a 
segment (intersection density or ID). To divide them into a similar type of geometric performance, 
an agglomerative clustering algorithm was used (Pedregosa et al., 2011). Complete linkage which 
provided the maximum distance between two sets was used to cluster the elements as this would 
ensure that the groups were far apart from each other. In order to determine the appropriate number 
of intersection groups, the average silhouette score was determined for different cluster groups 
(Pedregosa et al., 2011). This is calculated based on the mean intra-cluster distance and the mean 
nearest-cluster distance for each segment. 

For each of these groups, PCA was conducted using the five parameters of each segment. Based 
on the variance explained by the principal components (refer to Figure 10), three types of poor 
performing segments were identified. 

• Poor Type I – These segments had all the measures performing poorly.  
• Poor Type II – These segments had the WDV, OTV_POLY, OTV_LINEAR, and MTD 

parameters performing poorly.  
• Poor Type III – These segments only had the MTR parameter performing poorly.  



 
Segments can behave as good, poor type I, poor type II or poor type III. Based on them, the 

segments which are Poor Type – I would be the worst ones in performance. 

 
Figure 7. Performance of the segments based upon percentage of variance explained by the Principal Component(s). 
Segments were finally aggregated in terms of the percentage of different behavior at a corridor 
level. Dynamic corridors and the performance of the corridors on normal days were used to judge 
the overall performance of any corridor. The corridors which were dynamic and poorly performing 
on normal days should be the first ones where the adaptive control may be implemented. This can 
be followed by the corridors which were performing poorly on normal days because a corridor is 
expected to perform well on normal days. This information can be used to support the traffic 
engineer’s decision making when considering adaptive control as well as prioritizing the remaining 
signals that need retiming. 

3. Results and Discussions 
This section describes the application of this methodology to the Des Moines metropolitan 

corridors identified in Section 2.1. 
3.1 Dynamic Days for Different Locations 

As used in (Cheng, 1995), the days with a LOF value greater than 2, and also those beyond the 
cutoff point were seen to be significantly different from the others for most of the segments and 
was determined to be the threshold for dynamic days. Using this ideology, the dynamic days were 
identified for each segment, collected daily, and some of the top listed days are noted in Table 2. 
It was observed that weather was the major cause of dynamic behavior, suggesting that the speed 
of traffic was highly influenced by weather in the state of Iowa. The percentage of dynamic days 
show the variability in traffic demand. Higher percentage of dynamic days correspond to wider 
variability of travel rate over that segment. Analysis of the dynamic days revealed that the highest 



dynamic days were located on Grand Avenue and Ashworth Road. A segment is defined as a 
dynamic segment if it had more than 6% of dynamic days which was determined by the elbow 
cutoff point on the percentage of dynamic days. Dynamic segments were used to identify dynamic 
corridors as shown in Table 4, which identified Ashworth Road and Grand Avenue corridors as 
having the highest percentage of dynamic segments, which is apt as the former is influenced by 
the largest church in the state and later one by major entertainment events within the downtown 
area. 

Table 2: Reasons for some of the top dynamic days. 

Rank Date Percentage of segments with dynamic days Reasons 
2 11/26/2016 17.78 Thanksgiving weekend 
3 11/27/2016 17.39 Thanksgiving weekend 
5 9/5/2016 15.38 Labor Day 
6 12/17/2016 15.29 Snow 
7 1/19/2016 14.68 Snow 
8 1/24/2016 13.24 Fog 

10 9/3/2016 12.40 Des Moines Triathlon 
11 12/24/2016 12.33 Christmas Eve 
13 2/10/2016 10.78 Snow 
19 7/20/2016 9.13 Flashfloods 
20 12/11/2016 9.09 Sleet 

  



Table 3: List of Dynamic Corridors 

Corridor Direction Number of 
segments analyzed 

Percentage of 
Dynamic Segments 

Ashworth Rd N/E 10 50 
Ashworth Rd S/W 13 62 
Fleur Drive N/E 10 10 
Grand Ave N/E 21 52 
Grand Ave S/W 23 35 

Hickman Rd N/E 30 3 
Hickman Rd S/W 31 6 

Merle Hay Rd N/E 13 15 
SE 14th St S/W 8 13 

University Ave* N/E 13 15 
University Ave* S/W 11 18 
University Ave N/E 15 7 
University Ave S/W 15 20 

*Adaptive corridor 
 

3.2 Evaluation of Travel Rate Metric 
The travel rate metric was determined for the remaining normal days. The five parameters – 

OTV_POLY, OTV_LINEAR, MTD, MTR, and WDV were calculated for each segment. The 
segments were then grouped based on AADT density and Intersection Density. In order to have 
an optimum number of clusters, the maximum number of clusters was limited to 15. The average 
silhouette measure yielded an optimum cluster number (maximum average silhouette measure) of 
9 for the given segments. Out of these, 3 were outliers and the remaining analysis was conducted 
using the other 6 clusters which were named according to their values as shown in Table 5.  Also, 
90% confidence bounds for each group are shown in Table 5. 

Table 4: Groups for AADT per lane and ID for different type of segments with 90% 
confidence bounds. 

Type of segment AADT Density ID 
High AADT, Low ID 9900-16275 0-2.03 

High AADT, Medium-low ID 6913-15350 2.65-4.52 
High AADT, Medium-high ID 8000-15920 5.34-7.88 

Low AADT, High ID 3001-6550 7.72-9.70 
Low AADT, Low ID 1296-7450 0-2.45 

Low AADT, Medium-low ID 2062-7855 2.91-5.42 
 

These measures were then used to define the performance of the segments on normal days. In 
order to capture the variation using fewer and more precise parameters, PCA was calculated for 
all the segments within each group. The percentage of variation explained by the first two 



components is shown in Table 6. Based on the percentage of variance, it was seen that the groups: 
Low AADT with Low ID, High AADT with Low ID, and Low AADT with High ID (referred to 
as Group 1) required one principal component to explain the performance of the segment. On the 
other hand groups with High AADT with Medium-high ID, Low AADT with Medium-low ID, 
and High AADT with Medium-low ID (referred to as Group 2) required two principal components. 
The different types of poor performance meant that the segment did not behave well in some 
respect of the travel rate as seen in Section 2.2.2. For this analysis, the poor performance was 
defined as follows.  

• Poor Type I –This type included all the segments that have: 
o A positive principal component 1 for Group 1 (as shown in Figure 12).  
o A positive principal component 1 and positive principal component 2 

for High AADT with Medium-low ID. 
o A positive principal component 1 and negative principal component 2 

for all other members of Group 2 (refer to Figure 13). 
 

• Poor Type II – This type included all the segments that have:  
o Poor performing Group 2 segments with respect to principal 

component 1 only (refer to Figure 13). These are represented by 
positive value on principal component 1 only. 

• Poor Type III – This type included all the segments that have:  
o Poor performing Group 2 segments with respect to principal component 

2 only (refer to Figure 14). These are represented by positive value on 
principal component 2 for High AADT with Medium-Low ID negative 
value on principal component 2 for other group members of Group 2 
(refer to Figure 13).  

 
Table 5:  Percentage of variance explained by the first two principal components for each 
segment type. 

Segment Type Principal Component 1 Principal Component 2 
High AADT, Low ID 77.62 16.11 

High AADT, Medium-low ID 65.47 27.82 
High AADT, Medium-high ID 73.29 21.51 

Low AADT, High ID 81.77 11.73 
Low AADT, Low ID 83.85 10.44 

Low AADT, Medium-low ID 65.68 27.62 



 
Figure 8. (a) Principal Component 2 versus Principal Component 1 for segments on Group 1 
(Low AADT and High ID) colour coded based on PC 1and (b) Normalized values of MTR 
(MTR Norm), WDV (WDV Norm), OTV_POLY (OTV_POLY Norm), OTV_LINEAR 
(OTV_LINEAR Norm), and MTD (MTD Norm) for segments on Group 1 (Low AADT and 
High ID) colour coded based on PC 1. 



 

Figure 9. (a) Principal Component 2 versus Principal Component 1 for segments on Group 2 
(High AADT and Medium-high ID) colour coded based on PC 1 and (b) Normalized values of 
MTR (MTR Norm), WDV (WDV Norm), OTV_POLY (OTV_POLY Norm), OTV_LINEAR 
(OTV_LINEAR Norm), and MTD (MTD Norm) for segments on Group 2 (High AADT and 
Medium-high ID) colour coded based on PC 1. 

After classifying the segments for each category, they were accumulated at a corridor level as 
seen in Figure 14. Based on their current signal deployments, they were also grouped into adaptive 
and non-adaptive group to determine the performance of these groups separately. It was found that 
22nd Street and Jordan Creek Parkway were the ones which remained problematic despite having 
ASCT installed on them. University Avenue, Merle Hay Road, and Grand Avenue were the non-
ASCT based corridors that had high percentage of problematic segments. The main cause for 22nd 
Street was that the segments were very short in length (average of 0.27 mile) as compared to other 
corridors (average of 0.49 mile) which led to high variation in traffic. Jordan Creek Parkway, 
despite currently being under adaptive control, performed rather poorly as it is the major arterial 
corridor connecting University Avenue and Ashworth Road to Interstate 80. Like Ashworth Road, 
Jordan Creek Parkway serves both businesses, churches, and a regional mall which increases 
corridor travel times.  

Finally in corridors were identified to implement ASCT on the existing non-ASCT corridors. 
Grand Avenue, University Avenue and, Merle Hay would be the three most suitable locations to 
be considered. However, it would be difficult to implement adaptive control on Grand Avenue as 
it is in the downtown area where it is expected to run on fixed time coordination patterns to serve 
all movements including pedestrian mobility. Hence, adaptive control would benefit University 
Avenue and Merle Hay Road. Also, a thorough investigation can be conducted on the Jordan Creek 
Parkway to determine why it is unable to perform adeptly under ASCT. 
 



 
Figure 10. Type of segments for each corridor based upon their performance. 

4. Conclusion 
Probe-based real-time data are available from a number of vendors. This study uses such data 
source to determine segment performance and identify problematic segments on different arterial 
corridors. Using parallel computing, this method aims to compute these results from a large 
volume of data in a very shorter time. 

 Travel rate, defined as the travel time per mile, was determined as the parameter used to 
evaluate these measures. CDF plots of travel rate were constructed to represent the variability and 
behavior of the segments for each day. Unlike previous studies which used all days to capture the 
performance road segment, this study identified and removed the dynamic days for each segment 
of a roadway. Dynamic days were then evaluated separately to identify the extent of the anomalies 
and potential interventions relevant to unusual situations, such as special events, severe traffic 
incidents, extreme weather, and construction. After removing dynamic days, segments were 
classified into homogenous geometrical characteristics – Annual Average Daily Traffic per lane 
and number of intersections per segment. Five other measures were further extracted for these 
segments to quantify the overall performance of a segment - MTR, WDV, MTD, OTV_POLY, 
and OTV_LINEAR. PCA was further applied to these variables to reduce dimensionality and 
further classify the segments as good or poor. 

A case study was conducted for eleven arterial corridors within the Des Moines metropolitan 
area in Iowa to identify their performance. The dynamic days were first extracted and the segments 
with the highest dynamic days were found on Grand Avenue and Ashworth Road. After removing 
the dynamic days, the remaining segments were analyzed for their typical behavior. Most of the 
problematic segments occurred on corridors which already have adaptive control such as 22nd 
Street and Jordan Creek Parkway. The most problematic segments, where adaptive control does 
not currently exist, were on Grand Avenue, Merle Hay Road, and University Avenue. As 
intersections near downtown tend to have fixed time coordination, the next two corridors suitable 
for adaptive are Merle Hay Road and the University Avenue. 



The demonstrated methodology can be applied to identify problematic segments in the future. 
The tool can assist in identifying locations where delay is high, day-to-day traffic patterns are 
dynamic, or the minute-to-minute demands at signalized intersections are highly variable. Using 
this methodology, agencies can come up with their own thresholds or they can directly use these 
thresholds to determine the performance of the different segments. Future work can include 
applying this methodology to corridors, in other cities, to test these threshold values and findings. 
Through the measures defined, transportation agencies can easily automate the process of 
monitoring the performance of arterials so they can identify, screen, and prioritize signal retiming 
or traffic control modifications. These types of tools can support agency decision making, 
planning, and operational investments as they try to provide both throughput and safety for 
roadway users. 
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Tables and Figures 

 

Table 1. Methods to measure performance measures of arterial corridors and intersections. 
Performance Measure Methods used to measure 
Delay Stop bar and advanced detectors* (Sharma and 

Bullock 2008). Video recording* (Sharma & 
Bullock, 2008). High-resolution event data* (Day 
& Bullock, 2010). 

Number of stops Video recording* (Fernandes et al., 2015). 
Connected Vehicle+ (Argote-Cabañero, Christofa, 
& Skabardonis, 2015). 

(Maximum) queue length Stop bar and advanced detectors* (Sharma and 
Bullock 2008). Video recording* (Sharma & 
Bullock, 2008).  Stop bar and advanced detectors* 
(Sharma and Bullock 2008). Stop bar and probe 
data combined# (Comert, 2013). Probe data+ 
(Comert & Cetin, 2009) 

Arrival Type, Arrival rate on green, 
Degree of intersection saturation, 
Volume/capacity ratio, Level of 
progression,  Split failure 

Stop bar and setback detectors* (Smaglik, Bullock, 
& Sharma, 2007). High-resolution event data* (C 
M Day and Bullock 2010) 

*  infrastructure dependent; + non-infrastructure dependent; # combined 

 

Table 2. Reasons for some of the top dynamic days. 

Rank Date Percentage of segments with dynamic days Reasons 

2 11/26/2016 17.78 Thanksgiving 
weekend 

3 11/27/2016 17.39 Thanksgiving 
weekend 

5 9/5/2016 15.38 Labor Day 
6 12/17/2016 15.29 Snow 
7 1/19/2016 14.68 Snow 
8 1/24/2016 13.24 Fog 



10 9/3/2016 12.40 Des Moines 
Triathlon 

 

Table 3: List of Dynamic Corridors. 

Corridor Direction Number of segments 
analyzed 

Percentage of Dynamic 
Segments 

Ashworth Rd N/E 10 50 
Ashworth Rd S/W 13 62 
Fleur Drive N/E 10 10 
Grand Ave N/E 21 52 
Grand Ave S/W 23 35 

Hickman Rd N/E 30 3 
Hickman Rd S/W 31 6 

Merle Hay Rd N/E 13 15 
SE 14th St S/W 8 13 

University Ave* N/E 13 15 
University Ave* S/W 11 18 
University Ave N/E 15 7 
University Ave S/W 15 20 

*Adaptive corridor 
 

Table 4: Groups for AADT per lane and ID for different type of segments with 90% confidence 

bounds. 

Type of segment AADT Density ID 
High AADT, Low ID 9900-16275 0-2.03 
High AADT, Medium-low ID 6913-15350 2.65-4.52 
High AADT, Medium-high ID 8000-15920 5.34-7.88 
Low AADT, High ID 3001-6550 7.72-9.70 
Low AADT, Low ID 1296-7450 0-2.45 
Low AADT, Medium-low ID 2062-7855 2.91-5.42 

 

 



 

Figure 1. Location of the corridors in Des Moines. 

 

Figure 2. Flowchart of the methodology. 



 

Figure 3. Plots of (a) Speed Variation, (b) Cumulative Distribution Plot for speed, (b) 

Cumulative Distribution Plot for travel time, and (c) Cumulative Distribution Plot for travel rate 

for a segment throughout a day. 



 

Figure 4. Plots showing (a) Daily CDF, (b) CDF plot of Representative day, (c) Difference 

between example day and representative day on CDF plots, (d) Normal and Dynamic days on 

CDF plots, and (e) Average 5-minute speed distribution for normal and dynamic days for Water 

Works Park, Fleur Drive. 

 

 

 



 

 

Figure 5. Plot showing the MTR as point “a” and WDV as point “b”. 

 



Figure 11. Figures showing (a) the 95% and 5% confidence lines and the 5% envelope, (b) The 

difference between the 95th percentile and the 5th percentile lines and c) The quadratic plot 

using the difference of the 95th and 5th percentile lines color-coded by the percentile values. 

 

Figure 7. Performance of the segments based upon percentage of variance explained by the 

Principal Component(s). 



 

Figure 8. (a) Principal Component 2 versus Principal Component 1 for segments on Group 1 

(Low AADT and High ID) colour coded based on PC 1and (b) Normalized values of MTR 

(MTR Norm), WDV (WDV Norm), OTV_POLY (OTV_POLY Norm), OTV_LINEAR 

(OTV_LINEAR Norm), and MTD (MTD Norm) for segments on Group 1 (Low AADT and 

High ID) colour coded based on PC 1. 

 



 

Figure 9. (a) Principal Component 2 versus Principal Component 1 for segments on Group 2 

(High AADT and Medium-high ID) colour coded based on PC 1 and (b) Normalized values of 

MTR (MTR Norm), WDV (WDV Norm), OTV_POLY (OTV_POLY Norm), OTV_LINEAR 

(OTV_LINEAR Norm), and MTD (MTD Norm) for segments on Group 2 (High AADT and 

Medium-high ID) colour coded based on PC 1. 



 

Figure 10. Type of segments for each corridor based upon their performance. 
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