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Abstract—Vehicle movement counting and classification is one
of the critical components for traffic intersection monitoring and
management. Cameras can be used to determine the vehicle
movement counts (left-turning, right-turning, and through move-
ments). Typically, cameras are installed with the view focused
towards a particular approach and there is no overlap or very
low overlap between the different camera views. Therefore,
vehicles need to be re-identified across multiple cameras to
detect the complete movement trajectory of the vehicle. In this
study, we proposed combining visual similarity obtained using
Convolutional Neural Networks (CNN) and temporal similarity
(vehicle re-appearance time in cameras) using logistic regression
(LR) model to perform vehicle re-identification. The logistic
regression model has been used in two stages (without and with
hard-negative mining) combining visual and temporal similarity.
The results showed that using the hard-negative mining based LR
model, the Top@1 results improved by 22% and Top@5 results
improved by 8.48%, compared to the results obtained using only
visual similarity measure for generating the rankings.

Index Terms—traffic intersection monitoring, traffic intersec-
tion movement count, vehicle re-identification

I. INTRODUCTION

Traffic intersections are one of the critical components
of roadway infrastructure, in terms of traffic operations and
traffic safety due to complex interactions between vehicle to
vehicle and vehicle to pedestrians. Therefore, it is essential to
develop smart traffic intersection monitoring and management
for improving traffic safety and mobility.

Signalized intersections are controlled using traffic signals
to maintain a steady flow by assigning the right of way to
every approach in a systematic manner. To efficiently handle
signalized intersections, it is critical to estimate the vehi-
cle movement counts (left-turning, right-turning, and through
movement) across different intersection approach legs such
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that the green time can be provided to all approaches as per the
demand. Further, turning movement counts are also required to
design facilities, maintenance, and planning at an intersection.

Typically, vehicle movement counts in a traffic intersec-
tion can be monitored using loop detectors, radar sensors,
or bluetooth devices. However, cameras are typically also
installed in traffic intersections, which can be directly used
for vehicle movement counts, thereby providing a cheaper
solution. In recent times, with advancements in computer
vision techniques based Intelligent Transportation Systems
(ITS), cameras can be used to estimate the traffic characteris-
tics apart from being used for surveillance alone. Typically,
the cameras are provided with its view focused towards a
particular approach/intersection leg and and there is no overlap
or very low overlap between the different camera views.
Hence, a single camera view does not provide the complete
view of the intersection. Therefore, when an intersection is
monitored using multiple cameras, vehicle re-identification can
prove a good way to monitor and manage the traffic.

Vehicle re-identification technique has been an integral part
of ITS-based solutions and it can be used to find same
vehicle appearing across various cameras at different times.
The features obtained from the visual appearance of the
vehicles can be used to re-identify the same vehicle in different
cameras. Typically, Convolutional Neural Networks (CNNs)
have been used as the state-of-the-art approach for image fea-
ture extraction and re-identification purposes. Coarse-to-fine
features matching along with license plate verification though
a Siamese Neural Network and spatio-temporal similarity
metric has developed to rank similar looking vehicles [1]. The
visual, space and time information are collectively leveraged
to improve the re-identification results [2]. Probability model
has also been used to determine the chances of reappearance
based on visual appearance and spatial-temporal constraints
[3].

In this study, we have focused on vehicle re-identification
based traffic intersection movement counting. While state-
of-the-art re-identification approaches based on CNN visual
similarity can be directly used to determine movement counts
across different cameras in a traffic intersection, their per-
formance are typically impacted due to high traffic volume
with visually similar looking images. Therefore, we propose
to use temporal and visual similarity to detect the vehicles
efficiently across different cameras in a traffic intersection. We



have used two different stages of logistic regression with and
without hard-negative mining to show the importance of hard-
negative mining and benefits of adding temporal similarity
along with visual appearance for vehicle movement count
generation using traffic cameras.

II. METHODOLOGY

Re-identifying and counting vehicle movements across dif-
ferent cameras consists of three broad parts: (a) representative
image generation, (b) ranking of visually similar images, and
(c) re-ranking based on temporal and visual similarity. Each
of these sections are discussed next in details.

A. Representative image generation

The first step for vehicle re-identification is to generate
representative vehicle images from the trajectories. These
images can then be used to re-identify vehicles across two
different cameras in a traffic intersection, thereby providing
the directional movement of vehicles in the intersection (left,
right or through movements).

Vehicle movement in a camera can be divided into two cat-
egories: (1) vehicles approaching the intersection (i.e., moving
towards the camera), and (2) vehicles leaving the intersection
(i.e., moving away from the camera), as shown in Figure 1.
The vehicles approaching the intersection will take a turn at
the intersection or go through according to their destination
and hence these vehicles will act as queries that need to be
identified in another camera of the intersection to determine
the vehicle movement class (left, right, or through movement).
The vehicles that are leaving the intersection as seen in the
camera will be the final appearance of the vehicle at the
intersection and these will act as the gallery dataset in which
we will search our queries. Therefore, query images need to be
extracted from trajectories approaching the intersection, while
gallery images extraction will be from vehicle trajectories
leaving the intersection.

Fig. 1. Two different vehicle movement categories in a camera: Class 1:
vehicle approaching the intersection, Class 2: vehicles leaving the intersection

1) Vehicle trajectory selection handling identity switches:
The representative images for query and gallery dataset need
to be extracted from each vehicle trajectory. However, frequent
stopping and heavy occlusion in traffic intersections leads to
identity switches while tracking vehicles, thereby leading to
multiple track ids of a single vehicle. These cases of identity
switches can lead to generation of multiple representative

images of same vehicle with different IDs. This problem can
be handled by selecting a virtual representative line (VRL)
through which all vehicles pass through. This will ensure that
only one trajectory passing through that line for each vehicle
is selected for representative image generation.

The concept of virtual stop bar, as described in [4], has been
used to determine the location of the VRL for the vehicles
of query set. A stopped location can be considered as the
location where no displacement of vehicles is observed in
consecutive video frames. All such locations are extracted
using the trajectory data of vehicles and a horizontal line
passing through the 50th percentile value of y-coordinates of
stopped locations has been marked as the virtual stop bar.
Figure 2 shows a sample approach with the stop location
points and the corresponding stop bar, generated for that
approach. This stop bar line is used as the VRL and all
trajectories passing through this are used for generation of
representative images of the query set. The gallery images
consists of vehicles that are leaving the intersection so the
vehicles don’t have to stop. This line is drawn manually in
the FOV of camera for the vehicles of gallery image set.

Fig. 2. Virtual representative line generation example: Yellow points indicate
no vehicle displacement points, Green line represents the VRL for vehicles
of the query dataset, Red-dashed line represents the VRL for vehicles of the
gallery dataset

2) Image extraction: Each selected trajectory passing
through the VRL contains multiple instances of the same
vehicle (i.e., trajectory points). Therefore, we can select more
than one instance of a particular vehicle to increase the rep-
resentativeness of the same vehicle with varying illumination
and/or appearance features. This can help to generate a more
robust re-identification model. In this study, we have chosen
a maximum of 3 representative images for each vehicle (i.e.,
3 trajectory points at suitable time-gap) such that the images
has at least some amount of variation in appearance features.

Each vehicle trajectory is generated by the tracking-by-
detection framework, where the vehicle is detected and local-
ized in a bounding box in every video frame. These bounding
box regions need to be cropped out from the video frame to
be used as the representative images of the vehicles.

The best representative image of a vehicle can be extracted
when it is near to the camera. The area of the bounding boxes
starts reducing as the vehicle moves away from the camera.
Hence, the area of the bounding box is used to generate the
best possible representative image set as well as to avoid



the cases of the partial vehicle occurrences. As discussed
before, the vehicles in the query dataset are approaching the
intersection, so they move closer to the camera and then leave
the camera Field of View (FOV). On the other hand, in case
of gallery dataset, the vehicles are leaving the intersection, so
they move away from the camera and leave the camera FOV.
The area vs time (in terms of video frames) is analysed for
both query and gallery image sets. For query dataset images,
the area of vehicles increases as it moves closer to the camera
at the intersection, reaches a peak, and starts decreasing as
the vehicle leaves the camera FOV (partial vehicle is typically
visible in this region). Figure 3 shows area vs frame plot for
such a sample trajectory. To remove partial vehicles appearing
in the border regions of the frame, a region of 20 pixels from
each edge of the frame is first trimmed. The best representative
image set can be obtained from the trajectory points near the
peak area. Therefore, in this study, 30% of the trajectory points
near the peak area is chosen, as shown in Figure 3. Out of these
trajectory points, a maximum of 3 representative image set for
each vehicle need to be extracted then using a suitable time
gap. In this study, we tested a time gap of 5 frames and 10
frames to determine the best suitable time gap.

Fig. 3. Area vs. frames plot for a sample trajectory of a query vehicle

Although ideally, we would like to extract 3 representative
images for each vehicle in query and gallery dataset, however,
taking the time gap of 5 or 10 frames between the images
results in vehicle images with very small bounding box areas.
To handle this, we filtered out and removed vehicle bounding
boxes with height less than 40 pixels [5], and therefore a
maximum of 3 representative images has been generated for
each vehicle, both in query and gallery dataset.

B. Ranking of visually similar images

Once the representative images of the query and gallery
dataset is generated, the first step is to determine the visu-
ally similar image pairs and rank them based on the visual
similarity distance metric. This is the backbone of standard
vehicle re-identification model and consists of two parts: (a)
feature extraction and (b) similarity distance metric using the
extracted feature vectors.

1) Feature extraction from representative images: To per-
form vehicle re-identification, vehicle features need to be gen-
erated first. In recent years, Convolutional Neural Networks

(CNNs) have produced state-of-the-art results for feature ex-
traction from images for different computer vision related tasks
such as image classification, object detection, and also vehicle
re-identification.

In this study, we have determined the visual similarity
distance based on the methodology adopted by [6]. ResNet-50
[7] architecture is used to train the feature extractor based on
transfer learning technique. The backbone model is pretrained
on ImageNet dataset [8] for an image recognition task. The
classification layer of the final model was removed [6] and
an adaptive pooling layer was used to output the mean of
input feature map in terms of width and height channels.
The feature dimensions were reduced to 512-dimensions using
a fully connected layer of length 512-d along with a batch
normalization layer. This 512-d output vector for every image
has been considered as the extracted features for that image.
The details of the training and feature extraction can be found
in [6].

2) Calculation of similarity between representative images:
The features extracted from the CNN model are the mathe-
matical representation of the query and gallery images. The
similarity between the images can be determined using these
feature vectors to generate ranking between each query image
dataset and all gallery images. A suitable distance metric has
to be used to convert the similarity of images to a single
numerical value. In this study, Mahalanobis distance [9] has
been used to obtain the similarity between the features of a
query image (qi) and a gallery image (gi). The mathematical
expression is shown in Equation 1:

d(q, gi) = (xq − xgi)
TM(xq − xgi) (1)

where G = gi | i = 1, 2, 3, .., n are the gallery image set or
search space of size n for a particular query image q. xq and
xgi denotes the appearance feature vector of a query image
q and a gallery image gi respectively. M denotes a positive
semi-definite matrix.

Each vehicle in query and gallery dataset has a maximum
of 3 representative images, the number can be lesser than 3
images, if bounding box height is less than 40 pixels [5].
Therefore, it generates a maximum of 9-dimensional (3x3)
distance matrix for each vehicle pair in the query and gallery
dataset. To proceed further, we choose the minimum distance
obtained in each 3x3 matrix and use them to generate the rank
of each query dataset to the gallery dataset images.

However, ranking using visual similarity distance metric
only can lead to significant false calls due to large query
and gallery dataset with different visually similar images.
Therefore, we need to re-rank using both visual and temporal
similarity to determine the final re-identification query and
gallery image pair. Next, we discuss our re-ranking strategy
using visual and temporal similarity.

C. Re-ranking based on temporal and visual similarity

The query and gallery dataset typically consists of a large
number of visually similar looking images, thereby resulting



in poor performance of re-identification using visual similarity
measure alone. The search space (gallery dataset) can be
reduced by considering vehicles passing the intersection in
a certain time interval after the query vehicle has left from the
FOV of query camera and is due for reappearance in one of the
camera present at other intersection approach legs. This time
constraint can help to reduce the number of vehicles in the
search space which has to be matched with the query vehicles
thus reducing the search time as well as false positive cases.
Therefore, we propose in this study to re-rank the gallery
dataset images using temporal similarity, along with the visual
features using a logistic regression model, described next.

1) Logistic regression model based re-ranking: Logistic
regression (LR) model is used for performing predictive
analysis to estimate the probability of any event occurrence
determined by a set of features, also called as independent
variables. The probability outcome (of the dependent variable)
is bounded between 0 and 1. In a discriminative learning,
if y is our dependent variable, x is the set of independent
variables (or features), then the probability of outcome will
be P (y|x). Similar to a linear regression, the estimated value
of y (ŷ) in a logistic regression can be modelled as: wT · x,
where w is the vector containing weight (or coefficients) of
each independent variable and x is the set of independent
variables. The predicted probability values (ŷ) are mapped
to probabilities using sigmoid function, to map the values
between 0 and 1.

In this study, we have used the visual similarity distance
metric and the reappearance time as the two independent
variables in the logistic regression model to re-rank gallery
images to query image. Reappearance time is the difference
between the last occurrence of query vehicle in the query
camera and the first occurrence of any gallery vehicle in
the gallery camera. The mathematical expression is shown in
Equation 2:

Tdiff = Tq,L − Tgi,F (2)

Where Tdiff is the reappearance time, Tq,L is the last oc-
currence of query vehicle in query cam, Tgi,F is the first
occurrence of gallery vehicle in gallery cam.

The LR model is used to rank the vehicles in the search
space of a query vehicle based on the probability outcome
obtained for the query-gallery image pairs through the model.
The model is trained as a binary classifier where a true query-
gallery image match is labelled as 1 and false query-gallery
image match is labelled as 0. The LR model is trained to
learn the difference between a true and false query-gallery
image match. The search space of a query vehicle contains
many vehicles among which there will be only one gallery
vehicle that is the same query vehicle which has reappeared
in a different camera. Therefore, the model is used generate a
probability outcome for every query-gallery image pair in the
search space. The pairs will be ranked based on this probability
in a descending order.

In this study, the logistic model is trained in two stages.
As discussed before, there will be many gallery vehicles in

the search space of a single query vehicle and there will
be only one true query-gallery match. Therefore, the number
of positive and negative samples are not equal. A balanced
dataset needs to be created before training the model. In
the first stage training, the balanced training dataset contains
randomly picked negative samples equal to the number of
positive samples present, the logistic regression model is
initially trained on this dataset.

In the second stage, the logistic regression model trained
in the first stage is used to generate the probability outcomes
of every query-gallery image pair in the training data of the
first stage. The query-gallery image pairs are ranked within
the search space of the query vehicles using these probability
outcomes. Now, the training dataset for the second stage is
recreated by using the set of negative samples (N ) generated
using two parts: (1) The hard negative samples which ranked
in the top 5 with a probability outcome higher than 0.5, these
are the samples among which a model can get confused to
make a decision, and (2) The negative samples ranking below
5 with a probability outcome lower than 0.5. The mathematical
representation is shown in the Equation 3.

N ∈
{
(rank ≤ 5 ∩ probability ≥ 0.5) ∪
(rank > 5 ∩ probability < 0.5)

}
(3)

III. DATASET

The videos used in this study were obtained from a traffic
intersection in Dubuque, Iowa, USA. Every approach leg of the
intersection is covered by a different camera. The video data
consists of 4 time-synchronized videos with a 10 fps (frames
per second) pace, each lasting 1 hour. Figure 4 shows the
camera views of the 4 approach legs of the study intersection.
We chose this intersection because the camera views helps to
determine the vehicle movement direction, which can be used
for generating the groundtruth query-gallery image pair. The
unmasked regions shown in the Figure 4 has been used to
generate the representative images of the query and gallery
dataset such that there is very low overlap between multiple
camera views.

Fig. 4. Camera view of the 4 approaches of study intersection



A. Ground truth generation for re-identification

A vehicle passing an intersection is expected to appear in
at least 2 cameras, as per the camera setup considered in
this study. The inter camera ground truths are the pairs of
query-gallery images of the same vehicle appearing in different
cameras at the intersection. The ground truths represent the
turns taken by the vehicle as it contains a pair of representative
images taken from different approach leg of an intersection at
different time instants hence depicts the complete movement
across the intersection.

The inter camera ground truths generated for the re-
identification analysis contains the vehicles occurring in all the
cameras in the video dataset for a duration of 1 hour. The total
re-identification dataset contains 2756 query vehicles in a 1-
hour duration. Out of this, the Eastbound, Westbound, North-
bound, and Southbound approaches contains 1283, 1203, 148,
and 122 query vehicles, respectively. This dataset is divided
into two parts for training and testing of the re-identification
analysis. The training and testing dataset contains vehicle
occurring in 30 minutes duration. The first 30 minutes duration
out of the 1-hour data is taken as training and the later 30
minutes is taken as testing. The training and testing dataset
contains 1313 and 1443 vehicles respectively.

B. Vehicle Trajectory Generation

The vehicle’s trajectory information is crucial for the task
of vehicle re-identification. In this study, we have used a
tracking-by-detection framework to solve the multiple object
tracking (MOT) problem of trajectory extraction from the
videos. In this study, the object detection task was carried
out using YOLOv5 [10], a more recent version of the most
popular real-time object detection architecture, YOLO (You
Only Look Once) [11]. The YOLOv5 model, pretrained on
Microsoft COCO dataset [12] was used for detecting the object
classes motorcycle, car, bus, and truck. A tracking algorithm
is then employed to generate the trajectory by using detections
obtained by the YOLOv5 model on the video dataset’s frames.
Simple Online Realtime Tracking (SORT) [13] is used as
the tracking algorithm to generate the trajectory using the
detections of the objects obtained from the YOLOv5 model.

IV. RESULTS AND DISCUSSIONS

A. Representative image generation

As discussed in the Section II-A2, there will be a maximum
of 3 representative images for any vehicle having a suitable
time gap between every image extracted. A higher time gap
can result in generating representative images with significant
variation in visual appearances, thereby generating a robust
re-identification. However, the concern about generating se-
quential representative images with a higher time frame gap
is that the size of images decreases as vehicle move away from
the camera with time. KITTI dataset [5] considers a minimum
of 40 pixels height as the cut off for their analysis. In this
study, we tested, 5 frames and 10 frames gap for generating
representative images. It was observed that 25% of vehicles
generated with 10 frames gap have bounding box height less

than the critical threshold of 40 pixels, while the number was
only 5% using 5 frames gap. Therefore, we have chosen 5
frames gap for generating representative images.

B. Search space analysis

The logistic regression model was trained in two stages
based on the criteria for picking negative samples to create
a balanced dataset, as discussed in Section II-C1. The results
obtained from the two stages LR models (without hard neg-
atives and with hard negatives) is shown in the Table I. The
model results have been compared with the ranks generated
by using only the visual similarity value, shown in Table I.

TABLE I
RESULTS ON TEST DATA

Metrics Logistic Regression model Using similarity
measure only1st Stage 2nd Stage

Top @ 1 53.08 % 70.76 % 58 %
Top @ 5 98.13 % 98.27 % 90.58 %

The Top@1 result is initially better by using visual similar-
ity measure only compared to the first stage logistic regression
model due to the fact that the model is trained on randomly
picked negative samples. Therefore it is not able to differ-
entiate between true positives and hard negatives effectively.
However, when the model is trained for the second stage
using the hard negatives (as per Equation 3), a significant
improvement in both the Top@1 and Top@5 accuracy is
observed compared to only using the visual similarity measure
only. The Top@1 results improved by 22% and Top@5 results
are improved by 8.48%, compared to the results obtained by
using the visual similarity measure only for ranking.

Table II shows the rank improvement and rank degradation
when the finally trained LR model (second stage) is used
over the visual similarity measure method. It can be seen
that the LR model (second stage) helped to accurately detect
271 additional vehicles as Rank 1, compared to using visual
similarity measure alone. Only 80 vehicles rank, on the other
hand got downgraded to rank 2 compared to rank 1 obtained
using visual similarity. Further, the Cumulative Matching
Characteristics (CMC) curve is also plotted against the ranks
to visualize the performance of all the methods at various
ranks, shown in Figure 5. Figure 5 and Table II shows the
efficacy of using a logistic regression based visual temporal
distance metric for vehicle re-identification and counting in
traffic intersections, compared to using visual similarity alone.

C. Turning movement count

The application of vehicle re-identification for this study
is to count the turning movement at an intersection where
each leg of the intersection is monitored by a different camera
rather than a single camera covering the whole intersection.
The turning movement undertaken by a query vehicle is
determined by using the Top@1 query-gallery vehicle pair
within the search space of query vehicle because the actual



TABLE II
RANKS IMPROVED AND RANKS DOWNGRADED BY USING LR MODEL

(SECOND STAGE) OVER USING VISUAL SIMILARITY METRIC ONLY

Logistic Regression (Second stage) over
using similarity measure only

Ranks improved Ranks downgraded
Initial rank Final rank Count Initial rank Final rank count

2

1

154

1

2 80
3 59 3 10
4 24 4 0
5 14 5 0
>5 20 >5 0

Total 271 Total 90

Fig. 5. CMC curve

turning movement cannot be determined by considering vehi-
cles at multiple ranks. Table III shows the turning movement
ground truths and the turning movement count that could be
captured by using the Top@1 of the final logistic regression
model (second stage). Total 1018 turning movements could be
detected out of 1443 ground truths. Although this results in
70% accuracy in detecting vehicle movements, however the
accuracy is significantly higher than the 58%, achieved using
visual similarity alone.

TABLE III
TURNING MOVEMENT COUNTS

Approach

Turning Movement
Counts

(Ground Truths)

Turning Movement
Counts

(Logistic Regression model)
Left Through Right Left Through Right

EB 35 528 87 31 378 60
NB 52 17 8 34 10 7
WB 5 620 27 3 422 27
SB 24 17 23 20 8 18

Total 116 1182 145 88 818 112

V. CONCLUSION

In this study, we have proposed vehicle re-identification
using visual and temporal similarity to generate traffic move-
ment counts in an intersection. A logistic regression based
method have been used in two stages (without and with hard-
negative mining) combining visual and temporal similarity. A

CNN based visual feature extractor, specifically trained for
extracting robust vehicle features has been used to extract
visual features from the representative images and based on
these features, the similarity for every query-gallery image
pair was calculated using a distance metric. A two-stage
progressive learning approach was used to train the logistic
regression model using similarity measure and reappearance
time as features. By using the proposed approach, the Top@1
results improved by 22% and Top@5 results improved by
8.48%, compared to the results obtained using the visual
similarity measure only for generating the rankings.
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